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ABSTRACT

MRI at high magnetic fields (> 3.0 T ) is complicated by strong inhomogeneous radio-frequency fields, sometimes
termed the “bias field”. These lead to nonuniformity of image intensity, greatly complicating further analysis
such as registration and segmentation. Existing methods for bias field correction are effective for 1.5 T or
3.0 T MRI, but are not completely satisfactory for higher field data. This paper develops an effective bias field
correction for high field MRI based on the assumption that the nonuniformity is smoothly varying in space. Also,
nonuniformity is quantified and unmixed using high order neighborhood statistics of intensity cooccurrences.
They are computed within spherical windows of limited size over the entire image. The restoration is iterative
and makes use of a novel stable stopping criterion that depends on the scaled entropy of the cooccurrence
statistics, which is a non monotonic function of the iterations; the Shannon entropy of the cooccurrence statistics
normalized to the effective dynamic range of the image. The algorithm restores whole head data, is robust to
intense nonuniformities present in high field acquisitions, and is robust to variations in anatomy. This algorithm
significantly improves bias field correction in comparison to N3 on phantom 1.5 T head data and high field 4 T
human head data.

Keywords: Restoration of MRI data, bias field compensation of MRI data, MRI brain data, image cooc-
currence statistics, high order image statistics, deconvolution.

1. INTRODUCTION

The accurate acquisition of MRI data requires a homogeneous radio-frequency field, which is not possible to
achieve. The inhomogeneity, sometimes termed the “bias field”, is more pronounced at MRI of high fields (>
3.0 T ), where the radio-frequency wavelength gets shorter, approaching the dimension of the human head or body.
The local dielectric properties of these regions lead to nonuniformity of image intensity, greatly complicating
further analysis such as registration and segmentation. Existing methods for bias field correction have been
reasonably effective for 1.5 T or 3.0 T MRI, but are not completely satisfactory for higher field data. This paper
develops an effective bias field correction for high field MRI especially for quantitative brain imaging at 4 T .

There have been several attempts to correct for nonuniformity during acquisition based on its physical proper-
ties. The nonuniformity of the transmission coil has been estimated from its frequency response to parameterized
acquisition sequences.1, 2 In addition, the nonuniformity of transmission and receiver coil(s) combined has been
approximated using phantoms.3 However, the physical correction methods are valid only for a particular MRI
sequence, but do not account for the complicated interaction between the radio-frequency fields and the human
body. It is not obvious how the combined nonuniformities can be accounted for during acquisition, especially
for higher magnetic fields. Thus, existing methods for correction of the nonuniformities during acquisition are
incomplete, time consuming, and clinically impractical.

As an alternative to physical corrections, several post-acquisition restoration methods have been proposed
to account for the effect of nonuniformities that do not require additional acquisitions and are applicable to a
range of MRI sequences. They make regularity assumptions about the field nonuniformity as well as anatomy
and treat the nonuniformities in the same way irrespective of their sources. Typically, they operate on the
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logarithm of image intensities of the data4–6 and assume that the bias field can be approximated by basis
functions such as Gaussians, splines, polynomials, or sinusoids. The simplest approach to address this problem
has been homomorphic filtering.7, 8 This is based on the assumption that the bias field corresponds to spatial
frequencies lower than those of the anatomy. Thus, smoothing an image in the spatial or frequency domain
gives the nonuniformity. Smoothing has also been applied to statistics of local histograms computed over image
tiles.7, 9 The basic assumption of homomorphic filtering, that the spatial frequencies of the bias field are lower
than those of the anatomy can be problematic for high field MR images. In such images the nonuniformity can
extend from the low frequency part of their spectrum until the intermediate frequency range.

Another class of approaches derives bias field estimations by registering the data to a tissue template or
atlas of expected intensity distribution and by computing either directly10 the difference between actual and
expected values or using the templates as a prior for subsequent processing.5, 11 Bias field estimation has
also been combined with tissue classification. Many of these approaches require initialization with manual
presegmentation12–15 while others are fully automatic. Some of these approaches estimate tissue classification
based on expectation maximization16 over the histogram,13–15, 17 and fuzzy c-means classification.18, 19 Intensity
tissue classification has also been combined with spatial Markov random fields.4–6, 13–15 Estimating the bias field
with registration and segmentation depends extensively on the prior assumptions. The accuracy of registration
is affected when the image has an intense bias field such as that present in > 3 T images. This poses a problem
when registration is used to extract the brain region from a head image. Also the priors of an algorithm may be
unable to represent the intensity variations of anatomy or pathology in the data. Moreover, there may not be
adequate contrast between the assumed tissue classes.

Several non-parametric approaches have been suggested that are more robust to inter and intra subject vari-
ability as well as pathology. One such class of non-parametric techniques is based on the retinex algorithm.20–22

This algorithm uses the logarithm of the intensities and normalizes them to the geometric mean of the intensities
within a neighborhood. Thus it enhances the components of the nonuniformity whose wavelength is close to
the size of the neighborhood considered and hence introduces overshooting contours at the borders between
different tissue regions.21 This problem can be alleviated but not resolved by using the multiresolution of an
image in terms of a Gaussian or a more general wavelet representation.22, 23 Another class of non-parametric
approaches assume that the image is a piecewise union of extensive regions of constant intensity. These methods
compute image derivatives such as the gradient or Laplacian and threshold their low values assumed to be due
to nonuniformities exclusively. The remaining derivatives are incorporated into a regularized cost functional
whose minimization estimates the nonuniformity.24, 25 The assumption of extensive homogeneous regions may
not hold as in the brain cortex in head imaging. Both retinex and variational methods operate locally and may
not restore global image statistics. They also assume a distinction between a low frequency nonuniformity and a
high frequency anatomy. More generally, corrections that use differential image properties may lead to different
restorations for different image regions.26

Another class of non-parametric techniques uses the global image intensity histogram.27, 28 These methods
can capture global image properties. They assume that the bias field widens the intensity distributions of the
various tissues. Thus, the inverse is assumed to provide a deconvolution for sharpening the histogram and
restoring image uniformity. This is achieved by estimating a smooth estimate of the nonuniformity. A commonly
used technique, N3,28 was found to have a performance superior to those based on homomorphic filtering.29 The
ability of the intensity histogram to discriminate between different distributions affected by high fields is limited
due to the corruption of the distributions caused by the spatial nonuniformity. A common sharpness optimality
criterion for histogram based methods is minimum entropy, which corresponds to single peak histograms resulting
from a flat image.27, 30, 31 Thus, the entropy criterion can be problematic in terminating an iterative numerical
algorithm.

To address the problem of uniformity restoration we use a nonparametric approach. In this study that is
based on high order intensity coincidence or cooccurrence statistics. Since it is a nonparametric approach it
is robust to subject anatomy, pathology, and intensity variations within a tissue. The cooccurrence statistics
represent the intensities of different tissues as well as the joint intensities of adjacent tissues. The high order
of coincidences favor dominant distributions and selectively decrease the contribution of noise to their variance.
The unmixing of the bias field from these statistics is done by considering its physical effect on the original



intensities, rather than their logarithm. The restoration is iterative with a robust stopping criterion based on
the entropy of the distribution normalized with respect to the dynamic range, namely, the scaled entropy. Our
algorithm was able to perform bias field restoration for human head data acquired under high field with an
emphasis on the brain region that gives rise to the dominant distributions of the white matter and of the region
around the interface between white matter and gray matter. It was found to have a better performance than N3
over the same data.28

2. INTENSITY NONUNIFORMITY MODEL

We assume that the measured image I and intrinsic anatomic image IA are related according to:

I = BIA + N. (1)

where matrix B contains the unknown nonuniform field and the noise N is additive. The statistics of IA are
assumed to consist of distributions that can be discriminated.

The Taylor series expansion of the bias field around a voxel x0 gives:

B(x) = B(x0) + ∇B(x)|x0 (x − x0) + O(x2). (2)

Approximation up to the first order term leads to a bias field which is locally linear within a sphere of radius
ρ = x − x0 around x0. Thus, quadratic and higher order terms are assumed to be negligible within distance ρ
from x0. The nonuniformity is recovered within a scale factor which does not affect the discriminability between
tissues. We also assume that the noise N is stationary, Gaussian, and white.32 In addition to the spatially smooth
variations the nonuniformity also has abrupt variations at the borders between different tissues. However, we
assume that these can be absorbed into the tissue statistics.

3. METHODS

The objective of this work is to decompose the product in equation (1) to estimate IA and a smooth B. We unmix
the effect that nonuniformity B has on the statistics of I. This provides a rough estimate of the nonuniformity.
We also assume that the nonuniformity B is spatially smooth, which is imposed directly by Gaussian smoothing.
Thus, we do not consider noise in equation (1), which has high spatial frequencies. The restoration is iterative
with a stable stopping criterion. An overview of the algorithm is sketched in figure 3.

3.1. Determining the Valid Dynamic Range of the Image

The valid dynamic range of the MR contrast mechanism is detected and very bright artifacts due to instru-
mental imperfections or blood flow are removed. Such artifacts do not follow the nonuniformity assumption of
equation (1). To this end we compute the histogram h of the original image I and the cumulative histogram
H′

=
∫

u hdu. The latter is normalized to unit L1 norm |H| = 1. We compute the intensity value u0.9 that
corresponds to the upper 0.9 percentile of H, H(u0.9) = 0.9. The intensity range up to 1.5 × u0.9 is preserved,
whereas the intensity range beyond that value is linearly compressed to the range (1.5 × u0.9, 3.0 × u0.9] with
maximum intensity umax = 3.0 × u0.9 to provide an initial estimate of image I0. The same intensity range
[0, umax] is maintained during the iterations t. The image is a map to this intensity range from its domain D,
It : D → [0, umax].

3.2. High Order Intensity Cooccurrence Statistics and their Properties

The statistics used in this work are the nth-order cooccurrences of pairs of intensities within a spherical neigh-
borhood in the image It with radius ρ, assuming that the field in windows of this size is linear. The count of
intensities in range u ∈ [0, umax] in a sphere of radius ρ around voxel x0 is given by:

ht(x0, u) =
∫

I−1
t (u)∩|x−x0|≤ρ

dx. (3)



In an nth-order cooccurrence of intensity range u1 and intensity range u2 the center of the spherical neighborhood
has intensity within u1 and the remaining window contains at least n − 1 voxels of the same intensity and at
least n voxels of intensity u2. Additional voxels of any of the two intensities within the spherical window ρ give
the cooccurrence:

ct(x0, u1, u2) =

⎧⎨
⎩

ht(x0, u1) − (n − 1) + ht(x0, u2) − n if It(x0) ∈ u1 ∩ ht(x0, u1) � n∩
∩ht(x0, u2) � n

0 otherwise.
(4)

where ct(x0, u1, u2) is the cooccurrence at x0 for iteration t. The image cooccurrences are given by integrating
the voxel cooccurrences over the entire image domain. The cooccurrence statistics are computed with a two
dimensional Gaussian Parzen window G(σc) to give a 2D matrix:

Ct(u1, u2) =
∫

D

ct(x, u1, u2)G(σc)dx. (5)

This is the joint intensity distribution of nth-order of an image with itself computed within spheres of radius ρ.
The resulting matrix Ct is not necessarily symmetric. The cooccurrences of a region with a contiguous tissue lie
close to the diagonal of matrix Ct. The joint cooccurrences of tissues around an interface of different tissues lie
farther from the diagonal. To examine the properties of the cooccurrence matrix we assume that the distributions
of IA in the cooccurrence statistics CA are Gaussian. The noise variance of the dominant distributions in the
cooccurrence matrix is decreased with increasing cooccurrence order. Thus, the discriminability between the
dominant distributions in CA is increased.

The effect of the presence of additive zero mean Gaussian noise N in an image is an increase of the variance
of the distributions in Ct. The effect of image intensity nonuniformity on an intensity cooccurrence between u1

and u2 where u1 is the intensity of the central voxel at x1 in a hypothetical anatomic image IA is to scale and
rotate it about the origin of Ct. The zero order term Bt(x1) in equation (2) scales cooccurrences around the
origin and the first order term ∇Bt(x1) in equation (2) rotates them around the origin. Thus, the effect of the
nonuniformity on Ct is easier to examine in polar coordinates (r, φ), where r =

√
u2

1 + u2
2 and tanφ = u2/u1. We

assume that the variation of the cooccurrence statistics of the nonuniformity Bt in the cooccurrence statistics
CBt along the radial axis, r, is given by a Gaussian distribution for ∆r, G(σr). It follows from33 that the effect
of the nonuniformity on σr is given by:

∆σr(x1) ∝ B(x1)r. (6)

The rotation angle ∆φ of the nonuniformity in its cooccurrence statistics CBt is given by:

∆φ(φ, α) = 2 sin−1

[
1√
2

√
1 − 1 + tan2 φ(1 + α)√

(1 + tan2 φ)(1 + tan2 φ(1 + α)2)

]
. (7)

where α = ∇B. This relation can be derived from figure 1 (a) and is plotted in figure 1 (b). We also assume that
the variation of a distribution in the azimuthal axis ∆φ gives rise to a unimodal Gaussian distribution G(σφ),
where σφ corresponds to a certain value of α.

3.3. Unmixing the Effect of the Nonuniformity from the Cooccurrence Statistics
To decompose the product in equation (1) and estimate It and a smooth Bt we use the cooccurrence statistics to
unmix the effect that the nonuniformity Bt has on Ct, where Bt is the estimate of B at iteration t. To unmix the
effect of the nonuniformity we compute the inverse of the Gaussian nonuniformity distributions for ∆r and ∆φ.
The inverses of these distributions give the restoration filters of the cooccurrence matrix. The radial restoration
filter is fr = G(σr)

‖G(σr)‖2
2+ε

and the angular restoration filter is fφ = G(σφ)

‖G(σφ)‖2
2+ε

, where ε is a very small nonzero
constant. In equation (6) the radial distortion is proportional to r. Thus, the size of the radial deconvolution
filter has the same linear dependence, σr ∝ r. The size of the radial restoration filter in the algorithm is its
standard deviation normalized with respect to the dynamic range to give its normalized standard deviation:

σn
r =

σr

umax
. (8)



The azimuthal restoration filter is represented in terms of angle in radians and hence it is inherently normalized
to the radius r in Ct, which is the dynamic range. The standard deviation of the angular restoration filter,
σφ, can be determined from equation (7). The 2D restoration filter fq = fr ∗ fφ is applied to the cooccurrence
matrix Ct. This will map every cooccurrence (u1, u2) to the expected one (uq

1, u
q
2) to give the expected restored

cooccurrence matrix Cq
t . The restoration of the cooccurrence matrix gives a restoration matrix Rt with a gain

factor for each intensity cooccurrence. The gain is the ratio of the new position uq
1 of the intensity of the central

pixel over the initial position u1 of the same intensity. Thus, the restoration factor or gain is Rt(u1, u2) = uq
1/u1.

(a) An intensity pair (u1, u2) as a result of the
nonuniformity becomes (u1, u2(1 + α)), α = ∇B.
The angle φ of (u1, u2) with the horizontal
axis becomes φ + ∆φ.
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(b) The effect of a constant nonuniformity α = 0.3
on the rotational angle ∆φ as a function of the
angle φ. The effect on cooccurrences close to the
diagonal is the highest.

Figure 1. The effect of nonuniformity on the azimuthal size of the deconvolution filter.

3.4. Estimation of the Spatial Nonuniformity

The restoration matrix Rt is backprojected to the image. We consider a sphere of radius ρ around a voxel
x1. The size of this neighborhood is the same as the size of the neighborhood that was used to compute the
cooccurrence statistics Ct. This sphere gives

(
4
3πρ3 − 1

)
intensity cooccurrences with the intensity of voxel x1.

These intensity cooccurrences index the restoration matrix Rt to get an equal number of gain factors. Their
expected value gives a rough estimate of the restoration image W rough

t at x1:

W rough
t (x1) = Ex2(Rt(It(x1), It(x2))) =

1(
4
3πρ3 − 1

) ∑
|x2−x1|≤ρ

Rt(It(x1), It(x2)). (9)

This is the inverse of the rough estimate of the nonuniformity W rough
t (x1) = 1/Brough

t (x1). The nonuniformity
field is assumed to be smooth. Thus, the restoration image W rough

t is filtered with a spatial Gaussian filter
G(σw) to give W smooth,′

t = W rough
t ∗ G(σw).

In practice the Gaussian distributions of the nonuniformity statistics can only be approximately inverted to
give the deconvolution filters. As a result they contain a low frequency component that tends to contract the
dynamic range of the image with iterations t. It is necessary to normalize the effective dynamic range since the
standard deviation of the radial deconvolution filter is a function of umax. The normalization is done with the



Figure 2. The radial and azimuthal size of the deconvolution filter change with its position on the cooccurrence matrix.

cumulative histogram of the image It by rescaling the intensity range to ensure that the upper 0.9 percentile,
u0.9,t, of the cumulative histogram Ht, Ht(u0.9,t) = 0.9 remains constant with iterations t. That is:

W smooth
t = W smooth,′

t

u0.9,0

u0.9,t
. (10)

The restoration from equation (10) is applied to the restored image pixelwise It+1 = It × W smooth
t to improve

its estimate.

Figure 3. A block summary of the algorithm.



3.5. Condition for End of Iterations

The Shannon entropy of the cooccurrence statistics of an image monotonically increases as it is corrupted with
a smooth nonuniformity from which it follows that the Shannon entropy of the cooccurrence statistics of an
image is larger than the one of the assumed intrinsic anatomic image, S(C0) > S(CA). However, the Shannon
entropy of the cooccurrence statistics of an image with the normalized effective dynamic range, namely, the
scaled entropy of the cooccurrence matrix is a non-monotonic function of the iterations t. The scaled entropy
is used as a stopping condition of the iterations. When the scaled entropy increases S(Ct+1) > S(Ct) the size
of the deconvolution filter is halved σq,t+1 = σq,t/2. The iterations end when the size of the deconvolution
filter becomes unity, σq,tend

= 1. The restored image is the one whose cooccurrence matrix has minimum scaled
entropy tq = mint∈[0,tmax] S(Ct), where tmax is the maximum allowed number of iterations.

3.6. Implementation Issues of the Algorithm

The computational cost of the algorithm can be accelerated with minimal loss of accuracy. The deconvolution
of Ct to get Rt can be accelerated by considering that the deconvolution filter fq is separable. The size of
the deconvolution filter is bounded in the implementation. This improves the robustness of the deconvolution
with respect to noise and flow artifacts that can produce very high intensities. A bound on the size also avoids
an unnecessary increase of the computational cost. Its maximum size σn

r,max corresponds to radial distance in
Ct equal to u0.9,0 of the histogram of the original image I0. That is, the maximum radial size of the filter is
σr = rσn

r,max/u0.9,0. In effect σn
r,max determines the radial size of the deconvolution filter. We also set a maximum

value for the size of the angular deconvolution filter σφ,max for similar reasons. It is obtained for u0.9,0 as well
as φ = 45◦ in Ct and a certain value of α in equation (7). The small value of the spatial window of radius ρ for
the computation of the cooccurrence statistics makes the significance of the radial standard deviation σr greater
than that of the angular standard deviation σφ.

The computation of the cooccurrence matrix Ct with the discretized version of equation (5) can be accelerated
by spatially subsampling the voxels in a sphere of radius ρ with a factor of ∆ρ. The same subsampling ∆ρ can
be used to compute the rough nonuniformity correction W rough

t in the discretized version of equation (9). The
Gaussian filter applied to W rough

t is separable. The algorithm can be further accelerated by using a multiplicative
factor for the smooth nonuniformity correction W smooth

t prior to applying it to the image. The computations
can be limited by bounding the maximum allowed number of iterations tmax. The speed of the algorithm can
also be increased without loss of accuracy by taking advantage of the fact that all the steps of the algorithm are
fully parallelizable.

4. EVALUATION OF THE ALGORITHM

Our algorithm has been implemented in the C++ programming language. The algorithm was applied to whole
head imaging data. A preprocessing step was used to remove the low signal regions with background or noise.
To this end a Rayleigh distribution was fit to the diagonal self-cooccurrence statistics. The nonuniformity was
computed over the foreground region and subsequently extrapolated over the low signal regions. The cooccurrence
algorithm has been evaluated on phantom as well as real data. It was compared with N3,28 a commonly used
algorithm for bias field correction.29 The parameters of N3 are the FWHM of the deconvolution kernel and the
distance between the knots of the spline bases. The values used for these parameters are listed in table 1 and
were combined with the least spatial decimation factor of two. The algorithm was evaluated for phantom images
with the noise free and bias free MNI head phantom. The algorithm was also evaluated with human head images
using the sharpness of the histograms of the restored images that was measured with the Shannon entropy. The
nonuniformity was initialized to unity everywhere B0(x) = 1, ∀x. The standard deviation of the Parzen window
in equation (5) was σc = 1.5. The cooccurrence statistics in equation (4) were computed in a sphere of ρ = 9 mm
with a subsampling factor of ∆ρ = 3 mm and the order of the statistics in the same equation was n = 3. The
size of the deconvolution kernel was σn

r = 0.026 and α = 0.3 in equation (7). The maximum number of iterations
was set to tmax = 36.



Suggested
phantom28

Tested for
brain 4T

Used for
brain 4T

FWHM of deconvolution 0.15 0.06,0.13,0,20 0.20
Distance of knots in space (mm) 200 20,110,200 20
Decimation in space 2-4 2 2

Table 1. Parameters used for N3 to correct phantom and human brain imaging data.

N = 0%
B = 0%

N = 3%
B = 40%

N = 5%
B = 0%

N = 5%
B = 20%

N = 5%
B = 40%

N3 (10−2) 1.40 8.17 12.76 12.56 12.77

Cooccurrence (10−2)
0

(-100%)
7.50

(-8.21%)
12.43

(-2.54%)
12.20

(-2.92%)
12.27

(-3.92%)

Table 2. The error is the absolute value of the difference between a corrupted phantom image and the noise free and
bias free MNI phantom. A variety of synthetic bias fields B and noise levels N were used. In all cases the error of the
cooccurrence algorithm is lower. The greater difference is that for the bias and noise free image.

4.1. Phantom Data

We used the 1.5 T phantom brain and the phantom nonuniformities provided by MNI.34, 35 The spatial smoothing
of the nonuniformity in the cooccurrence algorithm was σw = 77 mm. N3 was run with the parameters suggested
for this dataset28 given in the first column of table 1. We also computed the error maps for that data compared
to the uncorrupted original phantom. The original as well as the restored images were normalized to zero mean
and unit L1 norm. They were subsequently subtracted to give the error image. The L1 norm of the error image
was used as a measure of the error.

The error value was lower in all cases with our algorithm compared to N3. This is summarized in table 2.
The lower error demonstrates the improved performance of the algorithm as well as the improved stability of its
stopping criterion. This is an indication that subsequent applications of the algorithm to an image will have a
limited or no effect. Two example corrections with the highest level of simulated nonuniformity used, 40%, and
noise levels of 3% and 5% are shown in figures 4(a) and (b), respectively. In each example the first row shows
the original corrupted phantom with bias field and noise, the second row shows the restoration with N3, and
the last row shows the restoration with the cooccurrence algorithm. The images are shown with the dynamic
range windowed to that of the white matter. The N3 restoration contains a considerable residual of the bias.
The white matter intensity in the image restored with the cooccurrence algorithm is more uniform. The average
time duration of the cooccurrence algorithm is 37 min whereas that of N3 is 31 min.

4.2. Human Head Data

Human brain MRI data were obtained at 4 T using a T 1-weighted magnetization prepared rapid gradient echo
(MPRAGE) sequence and an 8-channel array head coil. The size of the images is 256 × 256 × 176 voxels with
uniform voxel resolution of 1.0 mm × 1.0 mm × 1.0 mm. The parameters of the sequence are TR/TE =
2300/3.37 ms, TI = 950 ms, and a flip angle of 7◦. The algorithm was applied to geriatric head data images,
which were selected randomly from a large database. The 8-channel receiver coil had larger field nonuniformity
than a conventional birdcage coil but provided better signal to noise, especially at the outer brain regions close
to the coils. The spatial smoothing of the nonuniformity in the cooccurrence algorithm was σw = 25 mm. N3
was run for a variety of parameters in the ranges recommended by the authors and given in the third column
of table 1. The objective of N3 is to sharpen the histogram distributions. We observed the histograms and
selected the parameters that gave the image that had the histogram with the most compact distributions. We
also verified our selection by measuring the sharpness with the decrease in the Shannon entropy of a histogram
and selected the parameter set that minimized it. The best performing parameters were FWHM = 0.2 mm and
distance of 20 mm between the knots, in the fourth column of table 1. The low distance between the knots is
consistent with the fact that the 4 T magnetic field gives rise to nonuniformities with a small wavelength. The



(a) (b)

Figure 4. Restorations of two phantom images with nonuniformity of 40% and noise levels 3% and 5% in (a) and (b),
respectively. In the first row is the original corrupted phantom, in the second row is the restoration with N3, and in the
third row is the restoration with the cooccurrence algorithm. The N3 restoration contains a considerable residual of the
nonuniformity. The improved performance of the cooccurrence algorithm is demonstrated by the higher uniformity of the
white matter intensity in the image.

minimal entropy values are in table 3. In all test cases the entropy of the histogram of the image restored with
our algorithm was lower than that of the image restored with N3 indicating that the new algorithm provides an
improvement over N3.

Representative corrections of four sets of data are shown in figure 5. In each example the first row shows the
acquired image, the second row shows the restoration with N3, and in the last row is the restoration with the
cooccurrence algorithm. The images are shown with the dynamic range windowed to that of the white matter.
The N3 restoration contains a considerable residual of the nonuniformity and sometimes even accentuates it.
Also N3 decreases image contrast by darkening the bright white matter and introducing overshooting contours
at the borders between different regions such as between gray matter and white matter at the cortex. The white
matter intensity in the image restored with the cooccurrence algorithm is more uniform. It took on average
1 : 23 hrs with the new algorithm to correct the volumetric MPRAGE datasets with 256× 256× 176 dimensions
given in table 1. The duration of the restoration depends on the amount of the nonuniformity in an image. It
took on average 2 : 21 hrs with N3. The cooccurrence algorithm is significantly more efficient.

5. DISCUSSION AND CONCLUSION

Most intensity uniformity restoration algorithms operate on the logarithm of the image intensities. Even though
this intensity transformation can make the problem additive it warps the dynamic range in a non physical way.
As a result it can increase noise and decrease the contrast to noise ratio. In this work we operate on the original
dynamic range with a physically motivated deconvolution. It is assumed that the corruption of the cooccurrence
statistics is caused by a nonuniformity which has a unimodal Gaussian distribution in its cooccurrence statistics.
This provides the deconvolution filter fq. The assumption for the statistics of the nonuniformity corruption may
not hold, particularly for high field data. However, the deconvolution is robust with respect to the shape of the
deconvolution filter and is mainly dependent on its overall variance. The deconvolution based on cooccurrence
statistics takes advantage of the fact that the nonuniformity B is smooth across the borders of different tissue
regions.

One of the main assumptions of the deconvolution process is that in the intrinsic anatomic image IA the
variation of intensities within a tissue class is low compared to the distance between the means of the distributions
of different tissue classes. The deconvolution is problematic if this discriminability assumption between the



Image N3 Cooccurrence

1 4.85 4.63

2 4.68 4.50

3 4.46 4.30

4 4.84 4.60

5 4.80 4.53

6 4.62 4.45

7 4.85 4.53

8 5.44 5.33

9 4.92 4.90

10 5.15 4.76

Table 3. In all cases the entropy of the image processed with the cooccurrence algorithm is lower than that of the entropy
of the histogram of the image corrected with N3. This demonstrates the higher performance of our algorithm.

distributions in IA is low or does not exist. In these cases the deconvolution introduces an error that tends to
decrease the contrast to noise ratio. If the spatial frequencies of the error are higher than those of the anatomy, the
smoothing step can remove them. Otherwise, the restoration will have a lower contrast. In effect the algorithm
is unable to unmix nonuniformity between two regions with very similar statistics that are spatially close. The
smoothing of W rough

t is done with a Gaussian which has a local effect. Smoothing with more global bases that
are polynomials or splines may increase the nonuniformity in W smooth

t . In conclusion, we developed a new non-
parametric algorithm based on neighborhood intensity cooccurrences for image restoration from nonuniform field
distortion. The new algorithm performed significantly better than the well-known N3 approach on high field,
4 T , phantom, and human brain MRI data.
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