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ABSTRACT

MRI at high magnetic fields (> 3.0T ) is complicated by strong inhomogeneous radio-frequency fields, some-
times termed the “bias field”. These lead to non-biological intensity non-uniformities across the imaged brain.
They can complicate further analysis such as registration and tissue segmentation. Existing methods for intensity
uniformity restoration have been optimized for 1.5T , but they are less effective for 3.0T MRI, and not at all satis-
factory for higher fields. Also, many of the existing restoration algorithms require a brain template or use a prior
atlas, which can restrict their practicalities. This paper develops an effective intensity uniformity restoration algo-
rithm based on non-parametric statistics of high order local intensity co-occurrences. These statistics are restored
with a non-stationary Weiner filter. The algorithm also assumes a smooth non-uniformity and is stable. It does not
require a prior atlas and is robust to variations in anatomy. In geriatric brain imaging it is robust to variations such
as enlarged ventricles, lesions, and low contrast to noise ratio. The co-occurrence statistics improve robustness to
whole head images with pronounced non-uniformities present in high field acquisitions. Its significantly improved
performance and efficiency has been demonstrated by comparing it to the very commonly used N3 algorithm on
1.5T MNI BrainWeb head phantoms and high field 4T human head images.

Keywords: Image intensity restoration, bias field correction, co-occurrence statistics, high order image statis-
tics, non-stationary Weiner filtering.

1. INTRODUCTION

In-vivo human magnetic resonance imaging (MRI) is a non-invasive imaging technique that provides good quality
volumetric datasets. It is used in clinical practice and research for studying anatomy and pathology such as brain
injury and neurodegenerative diseases. Longitudinal MRI can also be used to monitor the progression of these
conditions or their potential reversal with treatment. The qualitative interpretation of such data or the user-driven
quantitative interpretation is very limited and cumbersome due to the data size. Qualitative analysis is also not
reproducible. To take advantage of the imaging data the quantification must be done automatically.

The accurate acquisition of MRI data requires a homogeneous radio-frequency field, which is not possible to
achieve. The inhomogeneity is sometimes termed the “bias field”. The non-uniform radio-frequency field results
in non-biological intensity non-uniformities across the imaged brain. While a new generation of high-field MRI
scanners (> 3.0T ) has significantly improved the resolution of MR imaging, it suffers from more pronounced
intensity non-uniformities. In high fields the radio-frequency wavelength gets shorter, approaching the dimension
of the human head or body [1]. The local dielectric properties of these regions lead to non-uniformity of image
intensity, greatly complicating further analysis such as registration and tissue segmentation.
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There have been several attempts to correct for non-uniformity during acquisition based on its physical proper-
ties. The non-uniformity of the transmission coil has been estimated from its frequency response to parameterized
acquisition sequences [2, 3]. In addition, the non-uniformity of transmission and receiver coil(s) combined has
been approximated using phantoms [4]. However, the physical correction methods are valid only for a particular
MRI sequence and do not account for the complicated interaction between the radio-frequency fields and the hu-
man body. It is not obvious how the combined non-uniformities can be accounted for during acquisition, especially
for higher magnetic fields. Thus, existing methods for correction of the non-uniformities during acquisition are
incomplete, time consuming, and clinically impractical.

As an alternative to physical corrections, several post-acquisition restoration methods have been proposed to
account for the effect of non-uniformities that do not require additional acquisitions and are applicable to a range
of MRI sequences [5, 6, 7, 8]. They make regularity assumptions about the field non-uniformity as well as anatomy
and treat the non-uniformities in the same way irrespective of their sources. Typically, they operate on the logarithm
of image intensities [9, 10, 11] and assume that the non-uniformity can be approximated by basis functions such
as Gaussians, splines, polynomials, or sinusoids. Existing methods for intensity uniformity restoration have been
optimized for 1.5T images, but they are less effective for 3.0T MRI, and not at all satisfactory for higher fields.
The simplest approach to address this problem has been homomorphic filtering [12, 13]. This is based on the
assumption that the non-uniformity corresponds to spatial frequencies lower than those of the anatomy. Thus, the
non-uniformity is obtained by smoothing an image in the spatial or frequency domain. Smoothing has also been
applied to statistics of local histograms computed over image tiles [12, 14]. The basic assumption of homomorphic
filtering, that the spatial frequencies of the non-uniformity are lower than those of the anatomy, can be problematic
for high field MR images. In such images the non-uniformity can extend from the low frequency part of their
spectrum until the intermediate frequency range.

Another class of approaches estimates non-uniformity by registering the data to tissue templates or an atlas
and by using these directly [15] or as priors for subsequent processing [10, 16]. Non-uniformity estimation has
also been combined with tissue classification. Such approaches require initialization with manual presegmentation
[17, 18, 19, 20] while others are automatic [21, 22]. Some of these approaches estimate tissue classification
based on expectation maximization [23] over the histogram [18, 19, 20, 24], or fuzzy c-means classification [25,
26]. Intensity tissue classification has also been enhanced by breaking an image into subregions [27, 28] and
using spatial Markov random fields [18, 19, 20, 9, 10, 11]. Estimating the non-uniformity with registration and
tissue segmentation depends extensively on the prior assumptions. The accuracy of registration is affected when
the image has a pronounced non-uniformity such as that present in > 3T images. This poses a problem when
registration is used to extract the brain region from a head image in preprocessing. Also the priors of an algorithm
may be unable to represent the intensity variations of anatomy or pathology in the data. Moreover, there may not
be adequate contrast between the assumed tissue classes.

Several non-parametric approaches have been suggested that are more robust to inter and intra subject variabil-
ity as well as pathology. One such class of non-parametric techniques is based on the retinex algorithm [29, 30, 31].
This algorithm uses the logarithm of the intensities and normalizes them to the geometric mean of the intensities
within a neighborhood. Thus, it enhances the components of the non-uniformity whose wavelengths are close to
the size of the neighborhood considered and introduces overshooting contours at the borders between different tis-
sue regions [30]. This problem can be alleviated but not resolved by using the multiresolution of an image in terms
of a Gaussian or a more general wavelet representation [32, 31]. Another class of non-parametric approaches as-
sume that the image is a piecewise union of extensive regions of constant intensity. These methods compute image
derivatives such as the gradient or Laplacian and threshold their low values assumed to be due to non-uniformities
exclusively. The remaining derivatives are incorporated into a regularized cost functional whose minimization
estimates the non-uniformity [33, 34, 35]. The assumption of extensive homogeneous regions does not hold in
many anatomical regions including the brain cortices, which are regions of great interest in a variety of clinical
studies. Both retinex and variational methods operate locally and may not restore global image statistics. They
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also assume a distinction between a low frequency non-uniformity and a high frequency anatomy. More generally,
the use of differential image properties [36] may lead to restorations that depend on image structure rather than
intensity non-uniformity.

Another class of non-parametric techniques uses directly the global image intensity histogram [37, 38]. These
methods can capture global image properties. They assume that the non-uniformity widens the intensity distribu-
tions of the various tissues. Thus, the sharpening of the histogram is assumed to restore image intensity uniformity.
This is achieved by estimating a smooth estimate of the non-uniformity. A non-parametric technique, N3 [38], was
found to have a performance superior to those based on homomorphic filtering [5]. The ability of the intensity
histogram to discriminate between different distributions affected by high fields is limited due to the corruption
of the distributions caused by the spatial non-uniformity. A common sharpness optimality criterion for histogram
based methods is minimum entropy, which corresponds to single peak histograms resulting from nearly flat images
without anatomic information [37, 39, 40]. Thus, the direct use of entropy can be problematic in terminating an
iterative numerical algorithm.

This paper develops a non-parametric approach for intensity uniformity restoration that is effective for high
field MRI especially for brain imaging [41]. It is based on local high order intensity coincidence or co-occurrence
statistics. Since it is non-parametric, it is robust to subject anatomy, pathology, and intensity variations within
a tissue. The co-occurrence statistics represent the intensities of different tissues as well as the joint intensities
of adjacent tissues. The high order of coincidences favors dominant distributions and selectively decrease the
contribution of noise to their variance. The effect of the image intensity distortion on the co-occurrence statistics
is modeled as a point spread function and used to design a non-stationary Weiner filter to restore the statistics.
The algorithm is also based on the reasonable assumption that the non-uniformity is smoothly varying in space.
The restoration algorithm is iterative with a robust stopping criterion based on the entropy of the co-occurrence
distribution normalized with respect to the effective dynamic range, namely, the scaled entropy. This algorithm is
able to perform intensity uniformity restoration for human head data acquired under high field with an emphasis
on the brain region that gives rise to the dominant distributions of the white matter and of the region around the
interface between white matter and gray matter. It was found to have a better performance than the commonly
used N3 technique over the same data [38].

2. METHODS

The model of the image as well as the image restoration emphasize the intensity non-uniformity distortion. We
assume that the intensity non-uniformity is spatially smooth. Thus, we do not consider image noise, which has
high spatial frequencies. The restoration is iterative with a stable stopping criterion. An overview of the algorithm
is sketched in figure 5.

2.1. Intensity Non-Uniformity Model

We assume that the measured image I and the true anatomic image IA are related according to:

I = BIA + N, (1)

where matrix B contains the unknown non-uniformity field and the noise N is additive. The statistics of IA are
assumed to consist of distributions that can be discriminated. The Taylor series expansion of the non-uniformity
around a voxel x0 gives:

B(x) = B(x0) + ∇B(x)|x0(x− x0) + O(x2). (2)

Approximation up to the first order term leads to a non-uniformity which is locally linear within a sphere of radius
ρ = x − x0 around x0. Thus, quadratic and higher order terms are assumed to be negligible within distance ρ

3



from x0. The non-uniformity is recovered within a scale factor which does not affect the discriminability between
tissues. We also assume that the noise N is Gaussian, stationary, and white [42].

2.2. Preprocessing for Selection of the Valid Intensity Range of an Image

The valid dynamic range of the MR contrast mechanism is detected and very bright artifacts due to instrumental
imperfections or blood flow are removed since they do not follow the non-uniformity assumption of equation (1).
To this end we compute the histogram h of the original image I and the cumulative histogram H =

∫
u hdu. We

compute the intensity value u0.9 that corresponds to the upper 0.9 percentile of H, H(u0.9) = 0.9. The intensity
range up to 1.5 × u0.9 is preserved, whereas the intensity range beyond that value is linearly compressed to the
range (1.5×u0.9, 3.0×u0.9] with maximum intensity umax = 3.0×u0.9 to provide an initial estimate of image I0.
The same intensity range [0, umax] is maintained during the iterations t. The domain of the image D is a subset of
three-dimensional space D ∈ x. The image is the map from its domain to its intensity range It : D → [0, umax].

2.3. High Order Intensity Co-Occurrence Statistics

The statistics of image It used in this work are the nth-order co-occurrences of pairs of intensities within spherical
neighborhoods of radius ρ, assuming that the non-uniformity field in spherical windows of this size is linear. The
count of intensities in range u ∈ [0, umax] in a sphere of radius ρ around voxel x0 is given by:

ht(x0, ρ, u) =
∫

I−1
t (u)∩|x−x0|≤ρ

dx. (3)

In an nth-order co-occurrence between intensity u0 and intensity u1 the center of the spherical neighborhood has
intensity u0 and the remaining window contains at least n− 1 voxels of the same intensity and at least n voxels of
intensity u1. Additional voxels of any of the two intensities within the spherical window ρ give the co-occurrence:

ct(x0, ρ, u0, u1) =

⎧⎪⎪⎨
⎪⎪⎩

max(ht(x0, ρ, u0) − n, 0) + max(ht(x0, ρ, u1) − n, 0) if It(x0) = u0∩
∩ht(x0, u0) � n∩
∩ht(x0, u1) � n

0 otherwise,

(4)

where ct(x0, ρ, u0, u1) are the co-occurrences at x0 for radius ρ and iteration t. The image co-occurrences are
given by integrating the intensity co-occurrences over the entire image domain. The co-occurrence statistics are
computed with a two dimensional Gaussian Parzen window G(σc) to give the probability distribution:

Ct(ρ, u0, u1) =
∫

D
ct(x, ρ, u0, u1)G(σc)dx, (5)

which is a 2D matrix. This is the joint intensity distribution of nth-order of an image with itself computed within
spheres of radius ρ. The resulting matrix Ct is not necessarily symmetric for high order co-occurrences n > 1. The
co-occurrences in a region with a contiguous tissue lie close to the diagonal of matrix Ct. The joint co-occurrences
of tissues around an interface of different tissues lie farther from the diagonal. To examine the properties of the
co-occurrence matrix we assume that the distributions of IA in the co-occurrence statistics CA are Gaussian. In
appendix 5.1 it is shown that regions of contiguous tissue have co-occurrence statistics whose variance is lower
than the statistics of the same region in the histogram.
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2.4. Effect of Image Distortion on Co-Occurrence Statistics

Figure 1 shows the effects of some types of image intensity distortions on the co-occurrence statistics using Brain-
Web T1 phantom images [43, 44]. In the first row is the true uncorrupted T1 phantom image. The distributions
in its co-occurrence matrix are sharp. The horizontal and vertical streaks are caused by the partial volume artifact.
The second row shows an image without intensity non-uniformity, but with high Gaussian noise N = 5%. The
distributions in its co-occurrence matrix are Gaussians. The presence of additive zero mean Gaussian noise N in
an image increases the variances of the distributions in the statistics C of the image. The third row in figure 1
shows a phantom with limited noise N = 3% and high intensity non-uniformity B = 40%. The effect of the
non-uniformity is primarily to elongate the distributions along lines passing from the origin.

Image intensity non-uniformity affects intensity co-occurrences between u0 and u1 where u0 is the intensity of
the central voxel at x0 in a hypothetical anatomic image IA. The effect is to scale and rotate them about the origin
of CIA

. The zero order term B(x0) in equation (2) scales co-occurrences around the origin. The first order term
∇B(x0) in equation (2) rotates them around the origin. The geometry of the angular distortion in the statistics is
demonstrated in figure 9 (a). The effect of the non-uniformity on co-occurrence statistics C is simpler to examine
in polar coordinates (r, φ), where r =

√
u2

0 + u2
1 and tan φ = u1/u0. We assume that the effect of the non-

uniformity B on the co-occurrence statistics of the true image CIA
is a Gaussian point spread function both along

the radial dimension r and the angular dimension φ. The co-occurrence statistics of the initial image CI0 are also
assumed to be corrupted by additive Gaussian noise NC . Thus, the effect of the image distortion in equation (1)
on the co-occurrence statistics is given by CI0 = CIA

∗ G(σr) ∗ G(σφ) + NC , where σr is the radial standard
deviation of the point spread function, and σφ is the angular standard deviation of the point spread function.

The standard deviation σr of the radial point spread function G(σr) depends on the mean value of the non-
uniformity, B(x0). It is shown in appendix 5.2 to be:

σr ∝ B(x0)r. (6)

The standard deviation σφ of the angular point spread function G(σφ) depends on the mean value of the gradient
of the non-uniformity, µ∇B = ∇B(x0). It is shown in appendix 5.3 to be:

σφ = 2 sin−1

[
1√
2

√
1 − 1 + tan2 φ(1 + µ∇B)√

(1 + tan2 φ)(1 + tan2 φ(1 + µ∇B)2)

]
. (7)

This relation is plotted in figure 9 (b).

2.5. Restoration of the Co-Occurrence Statistics for Image Intensity Uniformity

To product in equation (1) is decomposed to estimate It as well as a smooth Bt using the co-occurrence statistics.
The effect that the non-uniformity Bt has on Ct is unmixed, where Bt is the estimate of B at iteration t. To
unmix the effect of the non-uniformity we use the point spread functions of the distortion whose statistics are
given by equation (6) and equation (7). They are used to compute the non-stationary Weiner restoration filters for
the statistics. The radial and angular restoration filters are

fr =
G(σr)

‖G(σr)‖2
2 + ε

, and fφ =
G(σφ)

‖G(σφ)‖2
2 + ε

, (8)

respectively, where ε is a very small non-zero constant. They are the inverses of the Gaussian distortion point
spread functions bounded by ε, which represents the Gaussian noise NC present in the statistics. The shape of
the Weiner restoration filters is shown in figure 2. In equation (6) the radial distortion is proportional to r. Thus,
the size of the radial restoration filter has the same linear dependence, σr ∝ r. The size of the radial restoration
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(a) (b) (c)

Fig. 1. Example phantom T1 images from the MNI BrainWeb. In the first row in (a) is the true phantom, in the
second row is a phantom image without intensity non-uniformity but with high noise, and in the third row is a
phantom with high non-uniformity and some noise. Next to each image in (b) is its co-occurrence matrix. In (c)
are their corresponding restoration matrices where intensity corresponds to gain factor.

filter in the algorithm is its standard deviation normalized with respect to the dynamic range to give its normalized
standard deviation:

σn
r =

σr

umax
. (9)

The angular restoration filter is represented in terms of angle in radians, and hence it is inherently normalized to the
radius r in Ct, which is the dynamic range. The normalized standard deviation of the angular restoration filter, σnφ ,
is determined from equation (7). The total Weiner restoration filter is the convolution of the two filters fq = fr∗fφ,
where ∗ is convolution, and is two-dimensional. A figure with different sizes for the non-stationary Weiner filter
is shown in figure 3. It is applied to the co-occurrence matrix Ct and maps every co-occurrence (u0, u1) to an
expected one (uq

0, u
q
1) to give the expected restored co-occurrence matrix Cq

t = Ct ∗ fq. The restoration of the
co-occurrence matrix gives a restoration matrix Rt with a gain factor for each intensity co-occurrence. The gain
is the ratio of the new position uq

0 of the intensity of the central voxel over the initial position u0 of the same
intensity. Thus, the restoration factor or gain is Rt(u0, u1) = uq

0/u0. The co-occurrence statistics of the T1
BrainWeb phantom images in figure 1 (b) are used to compute the restoration matrices shown in figure 1 (c).

2.6. Estimation of the Spatial Non-Uniformity

The restoration matrix Rt is backprojected to the image. To this end we consider a sphere of radius ρ around a
voxel x0. The size of this neighborhood is the same as the size of the neighborhood that was used to compute the
co-occurrence statistics Ct. This sphere gives

(
4
3πρ3 − 1

)
intensity co-occurrences with the intensity of voxel x0.

These intensity co-occurrences are used to index the restoration matrix Rt to get an equal number of gain factors.
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Fig. 2. The shape of the Weiner restoration filter in both the radial r and angular φ dimensions.

Fig. 3. The radial and angular sizes of the non-stationary Weiner restoration filter fq change with its position on
the co-occurrence matrix.

Their expected value gives a rough estimate of the restoration image Wrough
t at x0:

W rough
t (x0) = Ex1(Rt(It(x0), It(x1))) =

1(
4
3πρ3 − 1

) ∑
|x1−x0|≤ρ

Rt(It(x0), It(x1)). (10)

The rough estimate of the spatial restoration given by this equation is the inverse of the rough estimate of the
non-uniformity field Wrough

t (x0) = 1/Brough
t (x0). The non-uniformity field is assumed to be smooth. Thus, the

restoration image Wrough
t is filtered with a spatial Gaussian filter G(σw) to give W smooth,′

t = W rough
t ∗G(σw). In

the first row of figure 4 is a T1 BrainWeb phantom image with B = 40% and N = 5%. The rough estimate of the
non-uniformity in this image is in the second row of this figure. In the third row of figure 4 is a smooth estimate of
the non-uniformity.
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Fig. 4. The first row shows a BrainWeb phantom with both high non-uniformity B = 40% and high noise
N = 5%. The second row shows the rough estimate of its non-uniformity and the third row the smooth estimate
of its non-uniformity.

The Weiner restoration filter contains a low-pass component to account for the noise in the statistics. As a result
the filtering tends to contract the dynamic range of the image with iterations t. It is necessary to re-normalize and
preserve the effective dynamic range since the normalized standard deviation of the radial restoration filter in
equation (9) is a function of the maximum intensity umax. The re-normalization is done using the cumulative
histogram of the image It by rescaling the intensity range to ensure that the upper 0.9 percentile, u0.9,t, of the
cumulative histogram Ht, Ht(u0.9,t) = 0.9 remains constant with iterations t. The correction for uniformity at

iteration t is given by Wsmooth
t = W smooth,′

t
u0.9,0

u0.9,t . This correction is applied to the restored image of iteration t
pixelwise,

It+1 = It × W smooth
t , (11)

to improve its estimate. The uniformity correction is initialized at t = 0 to unity Wsmooth
0 = 1, ∀x.

2.7. Condition for End of Iterations

The steps described in subsection 2.3 to subsection 2.6 are repeated iteratively. The spatial non-uniformity is
assumed to have a Gaussian point spread function in its co-occurrence statistics. It follows that the Shannon entropy
of the co-occurrence statistics of an image is larger than the one of the assumed corresponding true anatomic image,
S(CI0) > S(CIA

). The Shannon entropy of the co-occurrence statistics of the image decreases monotonically with
iterations as a result of Weiner filtering, S(CIt+1) < S(CIt). However, the Shannon entropy of the co-occurrence
statistics of an image computed over the normalized effective dynamic range, namely, the scaled entropy of the co-
occurrence matrix is a non-monotonic function of the iterations t. Thus, the scaled entropy can be used directly in
the stopping criterion for the iterations. In iterations t in which the scaled entropy increases Ssc(Ct+1) > Ssc(Ct),
the size of the restoration filter is halved σq,t+2 = σq,t+1/2. The iterations end when the size of the restoration
filter becomes unity, σq,t = 1 or at a maximum allowed number of iterations tmax. The restored image is the one
whose co-occurrence matrix has minimum scaled entropy trestored = mint∈[0,tmax] Ssc(Ct).
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Fig. 5. A block summary of the algorithm.

2.8. Implementation and Efficiency of the Algorithm

Three of the parameters of the co-occurrence algorithm affect its performance significantly. These are the size of
the Weiner filter for the restoration of the statistics σn

q , the size of the smoothing filter for spatial uniformity σw,
and the size of the co-occurrence window ρ. The algorithm accepts these three significant parameters as arguments.
The algorithm can also accept a foreground template that specifies the anatomical region of interest. Even though
this can bring some improvement in the restoration, it was not used in this work. The algorithm is very robust to
its remaining parameters that include the co-occurrence intensity resolution σc, the regularization for noise in the
co-occurrence statistics ε, and tmax. The variation of the latter parameters and several other minor design choices
can improve the efficiency of the algorithm with minimal or no loss of accuracy. The Weiner restoration filter for
Ct, fq, is separable. Its size is bounded to improve the robustness of the restoration with respect to noise and flow
artifacts that can produce very high intensities. A bound on the size of the Weiner filter also avoids an unnecessary
increase of the computational cost. The maximum radial size σr,max of the filter corresponds to radial distance in
Ct equal to u0.9,0 of the histogram of the original image I0, σr,max = σn

r u0.9,0. We also set a maximum value for
the size of the angular restoration filter σφ,max for similar reasons. It is obtained for u0.9,0 as well as φ = 45◦ in Ct

and a certain value of µ∇B in equation (7). The small value of the spatial window of radius ρ for the computation
of the co-occurrence statistics decreases the value of σn

φ and makes the significance of the radial standard deviation
σn

r greater. The computation of the co-occurrence matrix Ct with the discretized version of equation (5) can be
accelerated by spatially subsampling the voxels in the sphere of radius ρ either randomly or regularly in steps of
∆x1, ∆x2, and ∆x3. The same subsampling can be used to compute the rough non-uniformity correction Wrough

t

in the discretized version of equation (10).

The rough spatial estimate for the correction of the non-uniformity is smoothed to give a smooth estimate
using a spatial Gaussian pyramid [45]. The rough spatial estimate is first subsampled with a Gaussian pyramid to
a fraction of its size. Subsequently, it is smoothed in the low resolution. Finally, it is upsampled with a Gaussian
filter to give the smooth non-uniformity in the original resolution. During the first tmax/3 iterations the rough
estimate is subsampled to 25% in each of its three dimensions x1, x2, and x3. If the subsequent tmax/3 iterations
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Suggested
phantom [38]

Tested for
brain 4T

Used for
brain 4T

FWHM of deconvolution 0.15 0.06,0.13,0,20 0.20

Distance of knots in space (mm) 200 20,110,200 20

Table 1. Parameters ranges tested and used for N3 to correct phantom and human brain imaging data.

are performed, the rough estimate is subsample to 50% in each of its dimensions. Finally, if the last tmax/3
iterations are performed, the rough estimate is not subsampled and is smoothed in its original resolution and size.
The filter that was used to both compute the pyramid of Wrough

t and to smooth the non-uniformity is Gaussian,
which is separable.

The algorithm can be accelerated further, however, with some loss of accuracy. The effect of the smooth
non-uniformity correction Wsmooth

t can be accentuated prior to applying it to the image in equation (11) with a
multiplicative factor κ to give It+1 = It × (1 + κ(W smooth

t − 1)). Also, the computational cost can be limited
by bounding the maximum allowed number of iterations tmax. The algorithm was implemented in the C++
programming language and batch processing of images in a database is implemented with a Perl script.

3. EVALUATION OF THE ALGORITHM

The co-occurrence algorithm has been evaluated with phantom as well as real whole head images. We used
MNI BrainWeb phantom images and the simulated 1.5T non-uniformities provided from the same source [44,
43]. The real images were acquired at 4T . The difference in the field strength results in different amounts of
non-uniformity in the images of the two databases. In our algorithm this was reflected by a different choice for
the spatial smoothing parameter σw for the images of the two databases. The remaining parameters of the co-
occurrence algorithm were the same for both databases. The size of the restoration filter was σnr = 0.026 and
µ∇B = 0.3 in equation (7). The co-occurrence statistics in equation (4) were computed in a sphere of ρ = 9mm
with a factor for regular subsampling of ∆x1 = ∆x2 = ∆x3 = 3mm and the order of the statistics in the same
equation was n = 3. The high order of co-occurrences is necessary for the restoration of whole head images. The
maximum number of iterations was set to tmax = 36. The standard deviation of the Parzen window in equation (5)
was σc = 1.5.

The co-occurrence algorithm was compared over these two databases with N3 [38], a very commonly used
technique for bias field correction [5]. The least spatial decimation factor of two was used for this technique with
a maximum of 1000 iterations. The remaining parameters of N3 are the FWHM of the deconvolution kernel and
the distance between the knots of the spline bases. The values used for these parameters are listed in table 1. The
two algorithms were evaluated for phantom images with the uncorrupted noise free and intensity uniform MNI
BrainWeb head phantom. The algorithms were also evaluated with human head images using the sharpness of the
histograms of the restored images that was quantified with the Shannon entropy. The experiments were performed
on a Xeon processor of 3.6GHz and 8GB of RAM.

3.1. Preprocessing for the Extraction of the Signal Region in an Image

The co-occurrence algorithm was applied to whole head imaging data. A preprocessing step is used to remove
the low signal regions of background and noise. The image statistics used to extract the signal region are the
one dimensional diagonal self-co-occurrence statistics. The noise in these statistics corresponds to a compact
distribution in the low intensity range. The noise due to acquisition in a magnitude MR image is given by a
Rayleigh distribution, P (N) ∝ (u/σ2

N )e−u2/2σ2
N [46, 42], where σN is the standard deviation of the superimposed
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N = 0%
B = 0%

N = 3%
B = 40%

N = 5%
B = 0%

N = 5%
B = 20%

N = 5%
B = 40%

N3 (10−2) 1.40 8.17 12.76 12.56 12.77

Co-occurrence (10−2)
0

(-100%)
7.50

(-8.21%)
12.43

(-2.54%)
12.20

(-2.92%)
12.27

(-3.92%)

Table 2. The error is the absolute value of the difference between a restored T1 phantom image and the true T1
BrainWeb phantom. A variety of synthetic non-uniformity fields B and noise levels N were used. In all cases
the error of the co-occurrence algorithm is lower. The greatest difference is that for the true intensity uniform and
noise free image for which the co-occurrence algorithm has no error.

noise. This distribution is fit using the intensity and density value of the peak noise density. The fitted noise
distribution is subtracted from the image statistics to give the remainder distribution. The intensity range where
the noise density is higher than the remainder density gives the noise intensity range. The spatial locations that
correspond to noise intensities were assigned to the background. The largest connected component of the domain
with signal intensities was assigned to the signal region. The largest connected component is computed at a lower
image resolution to improve efficiency. The non-uniformity is computed over the signal region and subsequently
extrapolated to the low signal or no signal regions. The extrapolation is performed by numerically solving the
Laplace’s ∇B = 0 equation over the noise domain. The boundary conditions are Dirichlet with the non-uniformity
fixed over the signal region.

3.2. Phantom Images

The data used were 1.5T T1 BrainWeb phantom brain images corrupted by synthetic non-uniformities also pro-
vided by BrainWeb [44, 43]. The spatial smoothing of the non-uniformity in the co-occurrence algorithm was
σw = 77mm. N3 was run with the parameters suggested for this dataset [38] given in the first column of ta-
ble 1. We also computed the error maps for that data compared to the uncorrupted true phantom. Even though
the restoration was performed for the whole head phantom images, the error images were computed only over the
brain region. The brain region was extracted from the true uncorrupted phantom using the Brain Extraction Tool
(BET) [47]. The brain region in the original as well as the restored images were normalized to zero mean and unit
L1 norm. The true minus the restored images were subsequently subtracted. The absolute value of the difference
image was the error image. The L1 norm of the error image was used as a measure of the error.

The error values for the phantom images tested are given in table 2. In all cases the error with our algorithm was
lower than that of N3. The lower error demonstrates the improved performance of the co-occurrence algorithm as
well as the improved stability of its stopping criterion. Two example corrections with the highest level of simulated
non-uniformity used, 40%, and noise levels of 3% and 5% are shown in figures 6(a-b) and (c-d), respectively. In
both examples in (b) and (d) the first row shows the original corrupted phantom with intensity non-uniformity
and noise, the second row shows the restoration with N3, and the last row shows the restoration with the co-
occurrence algorithm. The images are shown with their dynamic ranges windowed to those of their white matter.
The N3 restoration contains a considerable residual of the intensity non-uniformity. The white matter intensity in
the image restored with the co-occurrence algorithm is more uniform. The higher accuracy of the co-occurrence
restoration is also shown by the error images in the same figure. The average time duration of the co-occurrence
algorithm is 37min whereas that of N3 is 31min.
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(a) (b) (c) (d)

Fig. 6. Restorations of two phantom images with non-uniformity of 40% and noise levels 3% and 5% in (a-b)
and (c-d), respectively. In (b) and (d) the first row shows the original corrupted phantom, in the second row is the
restoration with N3, and the third row shows the restoration with the co-occurrence algorithm. The N3 restoration
contains a considerable residual of the non-uniformity. The improved performance of the co-occurrence algorithm
is demonstrated by the higher uniformity of the white matter intensity. The error images of the axial sections
of the restorations are shown next to the restored images in (a) and (c), respectively. The error images for the
co-occurrence restorations are darker, which demonstrates improved accuracy.

3.3. Human Head Images

Human brain MRI images were acquired at 4T with an 8-channel array head coil. The 8-channel receiver coil
had larger field non-uniformity than a conventional birdcage coil but provided better signal to noise, especially at
the outer brain regions close to the coils. A T1-weighted magnetization prepared rapid gradient echo (MPRAGE)
sequence was used. The parameters of the sequence were TR/TE = 2300/3.37ms, TI = 950ms, and a flip
angle of 7◦. The size of the images acquired is 256 × 256 × 176 voxels with a uniform voxel resolution of
1.0mm × 1.0mm × 1.0mm. The algorithm was applied to head images of subjects from elderly populations.
The spatial smoothing of the non-uniformity in the co-occurrence algorithm was σw = 25mm. N3 was run for a
variety of parameters in the ranges recommended by its authors and given in the third column of table 1 [38]. The
objective of N3 is to sharpen the histogram distributions. We observed the histograms and selected the parameters
that gave the image that had the histogram with the most compact distributions. We also verified our selection by
measuring the sharpness as a decrease in the Shannon entropy of the histogram and selected the parameter set that
minimized it. The best performing parameters were FWHM = 0.2 and distance of 20mm between the knots, in
the third column of table 1. The minimal entropy values are in table 3. In all test cases the entropy of the histogram
of the image restored with our algorithm was lower than that of the image restored with N3 indicating that the
co-occurrence algorithm provides an improvement over N3.

The corrections of four representative images are shown in figure 7. In each example the first row shows the
acquired image, the second row shows the restoration with N3, and in the last row is the restoration with the co-
occurrence algorithm. The images are shown with their dynamic range windowed to that of the white matter. The
N3 restoration contains a considerable residual of the non-uniformity and sometimes even accentuates it. Also
N3 decreases image contrast by darkening the bright white matter and introducing overshooting contours at the
borders between different regions such as between gray matter and white matter at the cortex. The white matter
intensity in the image restored with the co-occurrence algorithm is more uniform.
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Image\ Alg. N3 Co-occurrence

1 (nats) 4.85 4.63

2 (nats) 4.68 4.50

3 (nats) 4.46 4.30

4 (nats) 4.84 4.60

5 (nats) 4.80 4.53

6 (nats) 4.62 4.45

7 (nats) 4.85 4.53

8 (nats) 5.44 5.33

9 (nats) 4.92 4.90

10 (nats) 5.15 4.76

Table 3. Comparison between the entropies of the histograms of the restored images. In all cases the entropy of
the image restored with the co-occurrence algorithm is lower than the entropy of the image corrected with N3.
This is an indication of higher performance of the co-occurrence algorithm.

The human head images were from elderly populations which are particularly challenging to restore. They
may have enlarged ventricles, lower contrast to noise ratio, lower cortical thickness, and many of them may have a
white matter lesion load as well as some motion artifacts. They are an excellent testing ground for our algorithm.
Its high performance on these images demonstrates its robustness and reliability. The duration of the restoration
depends on the amount of non-uniformity present in an image. It took on average 1:23hrs with the co-occurrence
algorithm and on average 2:21hrs with N3. Thus, the co-occurrence algorithm is also significantly more efficient.

4. DISCUSSION AND CONCLUSION

Most intensity uniformity restoration algorithms operate on the logarithm of the intensities. Even though this
intensity transformation can make the non-uniformity additive it warps the dynamic range in a non physical way.
As a result it can increase noise and decrease the contrast to noise ratio. In this work we operate on the original
intensities. The image noise in magnitude MR images is given by a Rayleigh distribution [46, 42]. In this work the
Rayleigh model for the noise is used during preprocessing for the extraction of the signal region. The nonunifomity
estimation is performed only over the signal region where the spatial noise can be approximated as Gaussian.
Similarly, the computation of the non-uniformity over the signal region allows the algorithm to assume that both
the non-uniformity and noise in the co-occurrence statistices are also given by unimodal Gaussian distributions.
The unimodal Gaussian distribution may not be representative for the non-uniformity, particularly in high field
images. However, the restoration is robust with respect to the shape of the Weiner restoration filter and is mainly
dependent on its overall variance.

Another pivotal assumption of the algorithm is that the intensity non-uniformity is spatially smooth. In spin
echo sequences the non-uniformity may have abrupt variations at the borders between different tissues. However,
for the purpose of image processing these abrupt changes can be absorbed into the tissue statistics [39]. The
algorithm also assumes that in the intrinsic anatomic image IA the tissue distributions are discriminable. The
restoration between two regions may be problematic if the discriminability between the distributions in IA is low
or does not exist and the two regions are also spatially close. The smoothing of the initial estimate of the uniformity
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(a) (b)

(c) (d)

Fig. 7. Examples of restorations of four human head images. In each example the first row shows the acquired
image, the second row shows the correction with N3, and in the third row is the restoration with the co-occurrence
algorithm. The N3 restoration contains a considerable residual of the non-uniformity and sometimes even accen-
tuates it. Also, it darkens the white matter and introduces overshooting contours at the borders between different
regions such as between the gray matter and the white matter regions at the cortex. The improved performance of
the co-occurrence algorithm is demonstrated by the higher uniformity of the white matter intensity in these images.

correction is done with a Gaussian which has a local effect. Smoothing with more global bases such as polynomials
or splines may accentuate the non-uniformity in some parts of the image.

Our algorithm was evaluated with high field human head images from elderly populations which are particu-
larly challenging to restore. Its high performance on these images demonstrates its robustness and reliability. The
algorithm is also time efficient. Its efficiency can be increased even further without loss of accuracy by taking
advantage of the fact that all the steps of the algorithm are fully parallelizable. In conclusion, we developed a new
algorithm that uses local intensity co-occurrences for effective image restoration from intensity non-uniformity
distortion in MR images.
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5. APPENDIX

5.1. Effect of Additive Image Noise on Co-Occurrence Statistics

We consider the statistics of a single contiguous tissue. The tissue is assumed to be intensity uniform and hence the
variance of its statistics is assumed to be zero. As described in subsection 2.1 we also assume that the superimposed
noise N is Gaussian, independently, and identically distributed with zero mean and variance Σ. Thus, the variance
of the tissue distribution in the image histogram is Σh = Σ. The histogram of this tissue is compared with the
one-dimensional diagonal self-co-occurrence statistics of pairs of intensities of the same contiguous tissue. The
noise in different voxels is assumed to be independent, and hence the conditional co-occurrence statistics reduce
to the product of the densities of the two Gaussians, one for each of the voxels of the same intensity. The product
must be renormalized to give a new distribution, the product of two Gaussians distribution whose variance Σc is
given by [48]:

Σc =
(
Σ−1 + Σ−1

)−1 = (2Σ−1)−1 = (12)

=
Σ
2

=
Σh

2
. (13)

Thus, the variance of a contiguous tissue distribution in the diagonal self-co-occurrence statistics is half of the
distribution of the same tissue in the histogram Σc = Σh/2. This increases the discriminability between tissue
distributions of the co-occurrences compared to those of the histogram.

In this work a number of co-occurrences with each of the voxels is considered in equation (4). This summation
is a linear transformation of random variables with identical mean and variance. Hence, the variance Σc is not
affected by the summation. The analysis in this appendix emphasizes the effect of noise in the variance and ignores
the effect of spatial intensity non-uniformity. In the algorithm we minimize the effect of non-uniformity locally
by selecting co-occurrences that lie within a small sphere of radius ρ. The effect of the intensity non-uniformity is
examined in subsequent subsections.

5.2. Effect of Image Non-Uniformity on the Radial Dimension of the Co-Occurrence Statistics

We consider the effect of the intensity non-uniformity on a single anatomic tissue. We assume that both the
distribution of the tissue and the distribution of the non-uniformity are Gaussian. The distribution of the tissue has
parameters µA and σA and the distribution of the non-uniformity has parameters µB and σB . The two distributions
are sampled spatially to give two images, which are multiplied to give image I . The distribution of the product
image I is a normal product distribution, which for two factors is a modified Bessel function of the second kind
PI [49]. The moment generating function of this distribution gives [50]:

E(PI) = µBµA + ρσBσA, (14)

and
V (PI) = µ2

Bσ2
A + µ2

Aσ2
B + σ2

Bσ2
A + 2ρµBµAσBσA + ρ2σ2

Bσ2
A. (15)

We assume that the spatial samples of the two Gaussian distributions of anatomy and of non-uniformity are
uncorrelated with ρ = 0. This assumption simplifies the expression for the variance in equation (15) to:

V (PI) = µ2
Bσ2

A + µ2
Aσ2

B + σ2
Bσ2

A. (16)

For a specific value of anatomic intensity uA the variance of the total distribution is V (Y |uA) = u2
Aσ2

B . Its
square root gives:

σ(PI |uA) = uAσB . (17)
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This relation holds for each of the two axes in the co-occurrence statistics. Consider a co-occurrence between
intensities uA0 and uA1 . The geometry in Figure 8 shows that:

σ(C|uA0 , uA1) ∝ σB

√
u2

A0
+ u2

A1
= σBr, (18)

where r is the distance of a co-occurrence from the origin.

Fig. 8. Radial standard deviation of a tissue distribution due to intensity non-unifomity.

5.3. Effect of Image Non-Uniformity on the Angular Dimension of the Co-occurrence Statistics

As shown in appendix 5.2 the zero order term B(x0) of the expansion of the field of the non-uniformity locally
causes only a radial deviation of the co-occurrences in Ct. We consider the angular deviation caused by the first
order term ∇B(x0) and ignore higher order terms. Thus, the intensity of the central pixel is not affected and a
co-occurrence (u0, u1) is mapped to (u0, u1 + ∆u1).

The cosine law for angle ∆φ over triangle ABD gives the cosine of the angle as a function of u0, u1, and ∆u1:

∆u2
1 = (u2

0 + u2
1) + (u2

0 + (u1 + ∆u1)2) − 2
√

u2
0 + u2

1

√
u2

0 + (u1 + ∆u1)2 cos ∆φ ⇒ (19)

Line BC of length ν forms the isosceles triangle ABC . The cosine law for that triangle gives:

ν2 = 2(u2
0 + u2

1) − 2(u2
0 + u2

1) cos ∆φ. (20)

The cosine cos ∆φ can be eliminated from equation (19) and equation (20) to give

ν2 = 2(u2
0 + u2

1) − 2(u2
0 + u2

1)
∆u2

1 − 2u2
0 − 2u2

1 − ∆u2
1 − 2u1∆u1

−2
√

u2
0 + u2

1

√
u2

0 + u2
1 + ∆u2

1 + 2u1∆u1

. (21)

The substitution ∆u1 = αu1 in this equation, where α = ∇B gives

ν2 = 2(u2
0 + u2

1)

[
1 − u2

0 + (1 + α)u2
1√

u2
0 + u2

1

√
u2

0 + u2
1(1 + α)2

]
. (22)
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(a) An intensity pair (u0, u1) as a result of the
non-uniformity gradient α = ∇B becomes
(u0, u1(1 + α)). The angle φ of (u0, u1)
with the horizontal axis becomes φ + ∆φ.
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(b) The effect of a constant non-uniformity α = 0.3
on the rotational angle ∆φ as a function of the
angle φ. The effect on co-occurrences close to the
diagonal φ = 45◦ is the highest.

Fig. 9. The effect of non-uniformity on the angular size of the Weiner restoration filter.

The substitution tan φ = u1/u0 in equation (22) gives:

ν2

4(u2
0 + u2

1)
=

1
2

[
1 − 1 + tan2 φ(1 + α)√

1 + tan2 φ
√

1 + tan2 φ(1 + α)2

]
. (23)

The midpoint E of line segment BC gives the right triangle ABE with sin∆φ
2 = ν

2
√

u2
0+u2

1

. This can be

substituted in equation (23) above to give

sin2 ∆φ(φ,∇B)
2

=
1
2

[
1 − 1 + tan2 φ(1 + α)√

1 + tan2 φ
√

1 + tan2 φ(1 + α)2

]
. (24)

In this equation we assume that the mean value of the gradient µ∇B = ∇B(x0) for α gives the standard deviation
∆φ(φ, α) = σφ of the unimodal Gaussian point spread function G(σφ) to get equation (7) in subsection 2.3.
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