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ABSTRACT

Microtubules are tubular biopolymers of the cytoplasm. They play numenidticatroles in a cell such as
providing mechanical support and structural tracks for the ancharmagtransport of chromosomes, organelles,
and vesicles. They also form the microtubule assembly, which is critical éocdbrdination of cell division and
migration. Abnormal function of the assembly is involved in cell pathology sasheurodegenerative diseases
and cancer. To date the study of the dynamics of the microtubule assembigdrasnostly qualitative by visual
inspection. Some quantitative statistics have been computed for the most dyaati€ the assembly, namely,
the microtubule outer tips located close to the cell cortex. Typically, the locatibtisose tips are manually
annotated in a time sequence, which is very tedious. In this work we haetoged a method to automatically
track microtubule tips so as to enable a more extensive and higher thrauglgmtitative study of the microtubule
assembly. Our approach first uses the entire frame sequence to estintatgahaevhere a tip is expected to lie. In
that region a tip feature is computed for all time and used to form the tip trajettasy, we evaluate our method
with phantom as well as real data. The real data show fluorescentlydttigiog cells imaged with epifluorescent
microscopy or confocal microscopy.

Keywords: Confocal microscopy, microtubule plus tips, microtubule dynamics, tubulactsne segmenta-
tion, motion tracking.

1. INTRODUCTION

1.1. Significance of Microtubules

Microtubules are biopolymers of the cytoplasm. They have a diameter2sfnm and are composed @f — 15
tubulin protofilaments [1]. In mammalian interphase cells one end is anchoesd@abanelle called the micro-
tubule organizing center (MTOC), which is positioned in the cell center teettie nucleus. Hundreds of micro-
tubules emerge radially from the MTOC like spokes out of a wheel. Two illtistra of their assembly are shown
in figure 1. In addition to providing structural stability the microtubules alseesas delivery tracks for the active
transport of organelles and vesicles. For instance, in a neuron theyesicles out to the terminals of centimeter
long axons in minutes to hours, whereas free diffusion would take y&aey also act as potential mediators of
cell protein signalling. The microtubules can come in close proximity to the ca#éxand dynamically probe the
cell periphery by rapidly growing with polymerization and shrinking with dgpwerization [1, 2, 3]. Their outer
tips are pivotal in chromosome repositioning during mitosis as well as cell migrdfion

Microtubules also play critical roles for cells in pathological states. Cell rtiggras essential for wound heal-
ing. Abnormalities in the microtubule assembly have been correlated with thetgefeAlzheimer’'s symptoms
[5]. Cancerous cells exhibit abnormalities in microtubule function related ltalisgsion. Thus, microtubules
have been identified as an important target for anticancer drugs [€nichl entities such as the taxanes inhibit



Fig. 1. Two viewpoints of a simulation of the microtubule assembblye microtubules in yellow originate
from the microtubule organizing center near the center®t#il, next to the nucleus. They end close to
the cell membrane.

the polymerization of microtubules. Thus, they stabilize the assembly and tacgr growth. Microtubule
drugs are used in the treatment of a variety of tumor types such as leukamiays of the lymphatic system, and
breast cancer. Several novel anticancer compounds with a similat effé¢he microtubules are in active clinical
development with the goal of identifying new drugs with improved specificitys essential to elucidate their
specific effects on the microtubule assembly. The latter with the goal of imgrakim therapeutic index with
reduced toxicity [6]. Current in vivo screening is tedious as microtubata ¢ analyzed by hand. Automation
can facilitate both basic science analysis of microtubules as well as enabé kiigoughput screening of new
microtubule drugs. Thus, the general goal of the automated procedsilagaoof the microtubule assembly is to
efficiently quantify its structure and dynamic behavior.

1.2. Related Work on Segmentation and Motion Tracking of Microtubues and Tubular Structures

To our knowledge the study of the microtubule assembly in microscopy padicular in epifluorescent and con-
focal microscopy data has only been done qualitatively by observatid].[Gome limited quantitative statistics
of the microtubules have typically been reported from manual annotatid0[aL. 1, 2, 3]. The manual approach is
time consuming and limiting. Only a small number of clearly distinguished tolontes are tracked for a limited
temporal extent. Human operators annotate the position of the tip. Thatigi#er used to compute the rates
of polymerization and depolymerization by assuming that the microtubrdestraight lines between the tip point
and an arbitrary reference point in the image. Moreover, manual iregks subjective and is not reproducible.
The automatic processing of data showing the motion of the microtubulenblsbas also been limited in the
number of tips tracked, the temporal extent of the tracking, and the ewailsequences on which tracking has
been evaluated [12, 13, 14, 15, 16, 17].

Algorithms for the processing of the motion of tubular structures typicallsisbrof preprocessing, tubular
segmentation, motion tracking, and summarization of the motion. Som®eeeping techniques have been edge
filtering [18], corner filtering, line filtering [19], histogram based intensittyresholding [20], as well as mor-
phological operations [21]. A combination of such techniques has lsed extensively for the extraction of
microtubules and other subcellular filamentous structures. A typicalesespiof steps has been to enhance the
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images with filtering, threshold the images based on intensity, and sulmdBodetect the tubular structure and
their tips with morphological operations [12, 15, 16, 17, 22]. A major limitatiof these approaches has been
the requirement to have an intensity threshold to segment the foregrduhe aicrotubule assembly from the
background. The selection of the threshold is difficult to do systematiddily.threshold selection in a time se-
guence is also complicated by the depletion of the fluorescence with timeowarmorphological operations
can introduce an error in the estimate of the tip location.

Several alternative approaches to the segmentation of a tubular struichwe been suggested that do not
require an intensity threshold. Such an approach has been to start freimgée point and perform sequential
intensity tracking [13, 23, 24], or sequential vector field tracking [25hese segmentation algorithms are based
on local computations and can be noise sensitive. An alternative apptoaggmentation of tubular structures
has been the use of minimal global paths [26, 27, 28, 29, 30, 31,32, These paths are streamlines of cost
maps computed by accumulating intensity or vector field information. Thelgépproaches to segmentation
of a tubular structure that are based on monotonically growing potentiajsiire the specification of both end
points of the structure [27, 29, 30, 32]. The minimal global direct patbshot require a threshold and are more
robust to noise. However, they are unable to represent the locabhckexistics of filamentous structures or resolve
clutter of filamentous structures in their subcellular assemblies. In this warlcombine the local sequential
and the minimal path approaches. We use a minimal path approach to tlvieatage of its noise robustness and
its ability to favor the differential geometric properties of the microtubule axisweler, we apply the minimal
path approach locally over spatially restricted regions. This improves ithtylo represent local structure of
microtubules.

The detection of the microtubule tip location is a difficult problem due to the lomaktg noise ratio at that
point. This is mainly a result of the diffraction during the imaging processd, the breakup of a microtubule at
its outer tip point into its constituent protofilaments. The tip detection is also coatgdicdoy the curvature of
the microtubule. The microtubule tip point in our work is characterized loaading level sets of minimal paths
defined similarly as for microtubule segmentation. They are used beotiseir robustness to noise and their
ability to represent local microtubule curvature.

Tubular segmentation techniques have been used in microscopy tat @ttraccellular biopolymers such as
actin [20] and chromosomes [23], as well as neurites at the cellularl|i84]. Several tubular structures have
also been extracted at the organ imaging level such as vasculature femmetic resonance angiography data
[33], paths along the colon for virtual colonoscopy [26, 27, 28], whitattar fibers from diffusion tensor imaging
data [29, 32], and the bronchial tree [35].

A traditional approach to motion quantitation of microtubules, namely kyaqaiay [14], assumes that a mi-
crotubule moves predominantly along its axis. The cross section at agloimg its axis is used to characterize
the intensity variation as a wave. More recently, Saban et al suggestadtamated tip tracking algorithm [16].
Their tracking algorithm, however, favors points along the microtubuleratiger than the tip points. Moreover, it
requires an intensity threshold that is not set systematically [16]. Thaseatso been work on motion tracking of
tubular structures at the organ imaging level. Some examples have betadking of the motion of vasculature
in coronary cineangiography [36], the retina in retinal imaging [37], datheter monitoring [38].

In the literature the microtubule tip motion has been quantified by its speed, mthiiation, and transition
rates between polymerization and depolymerization [9, 10]. In this warlalso suggest the use of the power
spectral density of the microtubule length as a function of time. It can septahe cyclical changes between poly-
merization and depolymerization of a microtubule in steady state as well astleéeration in the polymerization
of a microtubule. Accurate automatic or semi-automatic quantification ofatuibule dynamics allows a more
extensive quantification of the dynamics in the time and the number of tipedradtlkalso improves the accuracy
of the estimates of the tip dynamics and makes the computations objectivepardiicible. Moreover, it enables
the measurement of the length of a microtubule along its axis. A reliabletitatawe approach for automatic
determination of the motion of microtubules and their outer tips has not badar# in the literature. In this work
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we present an algorithm that addresses the problem of motion trackitig @hicrotubule outer tips and compute
measures to meaningfully summarize their motion [9, 10].

1.3. Related Work in Microscopy

There has been extensive work on motion tracking in microscopy for learticat have the shape of dots such
as individual atoms, cytoplasmic vesicles, and cytoplasmic organellds [Bfically dot tracking algorithms
consist of a feature detection step and a trajectory linking step. The featteetobn is usually performed with
model based template filters such as wavelets [40]. Some of the trajdictking techniques have been cross-
correlation [41], distance between centers of mass [42], and distaet@een Gaussian functions fitted to intensity
profiles [43]. Some of the main problems in the tracking of dots in micpgsbave been the possible temporary
disappearance of a dot from an image sequence, the possible spdetection of dots in individual frames of
a sequence, as well as the overlap of dots in some frames. These etimpdichave been addressed at the
trajectory linking step using advanced probabilistic techniques such asafslittering [44, 45] and graph based
approaches [46] between consecutive frames.

Another suggestion for trajectory linking has been to use spatiotempogdldets [40]. This approach, how-
ever, can potentially lead to a trajectory progressing backward in time.eldeer, spatiotemporal tracking restricts
the motion between two consecutive frames to be at most one voxel, whiehaditrs of the neighborhood used
for the level set propagation. In general, spatiotemporal approadhenicroscopy are also hampered by the
bleaching of the fluorescence with time and the temporal smoothing thaleaxyo tip points that do not lie on
the microtubules in some frames. Motion tracking in microscopy has algousss to track entire cytoplasmic
assemblies [47, 48] and even entire cells [49]. Many researchelisnctuperresolution in localization [42]. In
microscopy the motion of dots has been characterized by measuteasddfusivity and directionality [50, 51].

2. METHODS

We first summarize some properties of the microscopy data relevant to this &absequently, we describe the
various stages of the motion tracking algorithm [52]. A block diagram sumingrike algorithm is in figure 6.

2.1. Image Data

In vivo epithelial cells provide the substrate for this work. The cells weaastiected with tubulin tagged with

a fluorescent protein. They were imaged with epifluorescent microsmopgnfocal microscopy to give a video
sequence. The data was acquired for a 2D plane over time. The p@atidpnctions are assumed to be Gaussians.
The spatial resolution isz 130 nm/pizel. In confocal microscopy the depth resolutioris500 nm. The low
interframe time required to closely capture the dynamics of the microtubules Keegignal to noise ratio low.

In 2D data the microtubules can be approximated as bright ridges with ai@agssss section. The extent of
the Gaussian within one standard deviation of the peak gives the effatitivetubule widthw. A microscopy
sequence of duratioh= 0, ...,7 — 1 consists of frames represented by the ¥ap D — R from a 2D domain

D of dimensionx = (z,y) to intensity.

2.2. Feature Detection

The frames of the sequence are viewed as gray value functions. Tdeynlaanced using a line contrast feature
based on the extrema of the second spatial Gaussian derivative [30Hi8feature is computed at all pixels of
the sequenc®;(x) to giveZ;(x), Vx, t. The extrema of the second Gaussian derivatives at gigee computed
from the eigenvector decomposition of the spatial Hessian matrix at thattpayite the eigenvalues,; (x) and
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A2(x). The line contrast feature is computed from:

Ti(x) = ”6“‘) if Az’(x)>Aj(x)mAi(>2h<€£U is,:Jhere (i,5) = (1,2),(2,1)

(1)

The image derivatives are computed with Gaussian derivative filtersradatad deviatiorr = w, wherew is the
microtubule width.

L :
. b leading edge 0
Teukita Gell &xdspri, ERATO. J8T 1 0:00:00 Teukita Cell &sxdapri, ERATO,J8T 1 0:00:00
(a) First frame of a (b) Segmented microtubules over
real sequence the first frame

Lotn=tubalin=0ay 2

(NS
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Tsukita Cell Axis pri., ERATC.A5T 18  0:02:50

(c) Extrapolated microtubules over (d) Candidate tip points at the
the average frame intermediate frame

Fig. 2. The first frame of the sequence is in (a). The segmentations of the rhidexdwver this frame are shown in

(b). The average frame together with the extrapolations of the microtubateputed based on it are shown in (c).
These curves are subsequently refined for each frame. The cupeased to contain the tips at the intermediate,
18" frame, of the sequence are shown in (d).

2.3. Segmentation of a Microtubule

A microtubule is extracted in terms of consecutive segments [54]. Each segrneatracted based on its neighbor-
hoodD,c4m € D. The neighborhood is formed using a local coordinate sy$tefi™, y*<9™) = (x,y) — O*9™,
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whereO*“9™ is the origin. The origin for the extraction of the first segment is the tip paipt at the first frame
of the sequencé. The valid and non-null neighborhood is within the cirgile:*¢9™, y*¢9™)|| < 4w and a sur-
rounding annulus is nulled. The orig*“9™ for the extraction of all subsequent segments is the most recently
segmented point,.... The valid neighborhood for the extraction of subsequent segment®igvidlen the circle
|| (z5e9™ y5e9™) || < 4w. Moreover, ther**9™-axis is the microtubule tangent and the neighborhood is limited to
the reglormsegm < 2w, wherew is the microtubule width. Figure 3 shows a coordinate system centexgd.at

A microtubule segment in domaiR.,, of length! can be represented by the cu®eés) : [0,1] — Dgegm,
wheres is the arc-length parameter. A microtubule segment has two boundary ggints= xy which isx;..
andS(l) = x; which satisfiesx; € 0Dse4m. The set of all curves with these boundary point8is «,. Every
pixel atx = (z,y) € Dseqm IS associated with cosp. The pixel cost) is the product of two factors. The first
is proportional to the reverse intensiy = 1 — 7'(x)/Z),,.» WwhereZ/ .. = maxxZ'(x). It is isotropic and
favors microtubule fluorescence. The second fa@@r,ls anisotropic and favors microtubule centerline. It uses
directional parameters associated with every pixel, namely vedtoemdd., as well as scalars, andr,. The
pixel cost is non-negative and is given by:

> ; (2)

I’(
Qx,e) = (1 ) Z
Linax ||e||
wheree is a very small regularizing constant, aads a vector. The directional pixel parameterg phre derived
from the extrema of the second directional derivative. They are comgrtde the eigenvector decomposition
of the Hessian matrix of second derivatives. The vecthrandd, are set to the eigenvectors of the smaller
eigenvalue and larger eigenvalue magnitudes, respectively. Thessgatardr, are set to the magnitudes of the
larger and smaller eigenvalues, respectively.
The set of curves§ € By, «, is associated with the cost functional:

rl—i—e

X1

ES)= [ Q(S(s),S'(s))ds. ®3)
X0
The curve of minimuni’ over the seBy, «, is the microtubule segment. It can be computed over the cumulative
cost map of minimum possible valuEg(x) : Dsegm — R that starts atxg. That is, the minimal map is
Up(x) = minges,, . {£(Sx,,x)}. This relation can be combined with the differential of equation (3) to give the
Hamilton-Jacobi equation:
VU = Q- 4)

This relation can be solved numerically to obtain the minimal cumulativelégst

The numerical solution of equation (4) fol(x) is computed in terms of consecutive level sets [27]. A level
setUy(x) = t is the closed curv€(v,t) : R — R2, wherev is the arc-length parameter. The familyv, t)
overt is computed with the time evolution equatlgf—(“% Q dw.t) , Whered(v, t) is the normal t&C (v, t) [27].
It is initialized with a curveC(.,0) = 0Dgegm. The numerical solutlon visits each pixel once [55] and their costs
Q(x, e) in equation (2) are minimized with respectd@riginating from the eight-connected neighborhood. This
minimization of(@ is simple since it is a convex function of its parameters with a rhombus boufE&ary6]. The
retrieval of the pixels in a sequence is done efficiently with a priority he@p B curveS’ is extracted by starting
from xg = x,.. and proceeding alon%%' = —VUj to arrive atx; € 9Dyegm. The curveS’ minimizesE(Sx, x, )
and is appended to the microtubulé. The microtubule extraction ends when it reaches lehgit8w.

2.4. Segmentation and Enhancement of the Microtubule Assembly

Several microtubule outer (+) tipsip,o, i =0,...,n—1can be selected at the first frardg, of the sequence with
a user-interface that involves a mouse. The algorithm described earllare extraction is used to extract the part
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Fig. 3. A coordinate system centered at the most recently segmented gQintof a microtubule. The valid
region is in yellow surrounded by the null region in black.
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Fig. 4. The multiplicative sigmoid factor in equation (5), that%s(tanh (Iﬁ("%) + 1). It multiplies Z; and

transforms it taZ;. The maximum multiplicative factor is one and hence it preserves the dynange & the
image. The transformation enhances the signal to noise ratio. In this exampke

of the microtubules\?,i = 0, ...,n — 1, close to the microtubule outer tip in the first frame. The union of all the
microtubule segments1?, Vi gives the microtubule assembM, in the first frame of the sequence. The segmented
microtubules of the image in figure 2 (a) are shown in figure 2 (b) in diftezelors. The intensities oved, give
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a distribution. A standard deviation below the mean of this distribution givessityen = 1(Ag) — o(Ag), which
is used to transform the intensities in the sequence with a multiplicative sigmoid futetgoe:

7,(x) :I{% (tanh (W) + 1) Wt (5)

This multiplicative sigmoid is shown in figure 4. Its maximum value is one antehepreserves the dynamic
range of the image. It also enhances the range of intensities that is lthgara: and attenuates the range of
intensities that is lower tham.. The range of intensities below corresponds to the background. Thus, the
intensity transformation further increases the signal to noise ratio in the segué&ven though the background is
attenuated it is not set to zero. The diffraction makes the cross sectiamiof@tubule very similar to a Gaussian.
The falloff of the intensities away from the microtubule axis is smooth and extondhe background. Thus, the
background also contains information about the location of the microtubtite &he transformation is monotonic
and hence subsequent steps of the algorithm are more robust to ttisgvalue ofx compared to using the same
intensity as a threshold to set the background to zé&dlock diagram of the algorithm is in figure 6. In that
diagram the feature enhancement of the microtubules together with theirrsiagiore are the first two steps.

2.5. Depolymerization and Polymerization Region of a Microtubule OuterTip

The most active part of a microtubule is its outer tip. It probes the cytoplggmolgmerizing and depolymerizing
[1]. The extent of the axial microtubule motion is much greater than the extdr ateral one. This is particularly
the case in depolymerization where the microtubule tip motion is a collapse alongsitsTéws, the trajectory
of the outer tip in depolymerization lies along the microtubule axis in the frame whergackingstarts. This
is the first frame of the sequen@g. That is, the possible depolymerization trajectory of ttfemicrotubule tip
lies along its axis at = 0, Mj. The farthermost point from}; , , along Mj is the innermost reference point,
xt .., andis used for the computation of the microtubule outer tip depolymerizationttrajeThis is shown in
figure 5 (a).To model the limited lateral motion that a microtubule can have we consideetfien aroundM¢
within v = 2w to get regioan. That region is expected to contain the possible depolymerization trajecttrg of

i*" microtubule outer tip.

Microtubule i

\ Xlouter
X Microtubule
inner 8
extension inner
(a) Microtubule segmentation and (b) Curve expected to contain
extrapolation a microtubule tip
Fig. 5. In (a) is the segmentation of a microtubule at the first frame starting f«@m until ¢ ... The micro-

tubule is also extrapolated to get, ;... In (b) is the curvel: along which a microtubule tip can lie at tinte
CurveL! is between boundary points, . andx® ...

The region where thé” microtubule is expected to polymerize is estimated by extrapolating it starting from
the microtubule outer tip point at the first framt-;iip,o. To extrapolate the microtubule we use a multiresolution

approach in the temporal dimension by segmenting it over the average ffahee sequencé,,, = Zt:Ol ;.
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The segmentation algorithm used is that described in section 2.3 and\g§/e§he point farther fronx:, 0 along
/\/ll is the farthermost point of the extrapolated microtubule and provides thenmsgereference pomtouter for
the computation of the trajectory of a microtubule outer tip. This is shown in fig@ag. An example of an image
with extrapolated microtubules is shown in figure 2 (.model the limited lateral motion that a microtubule can
have we consider the region within= 2w around the extrapolated microtubuM]@ to obtain the image domain
in which the microtubule can polymerizg,,.

The length of the axes of bofh; and Dj, is chosen to bé = 8w, which can adequately capture the cyclical
motion of a microtubule in steady state for several minufse union of regiond); and D;, gives the domain
expected to contain the trajectory of the microtubule outermpa] = DU D.. In that reglon the poink,,,,..
is taken as a starting point to compute a cumulative cost Ugatp vt. The cost along the microtubule axis is
lower than it is in the background. This difference is robust both with ietspebackground noise and microtubule
curvature. Subsequently, we use this map to compute the minimal pattetweenx? .., andx’,...... Both the
cumulative cost and the curve are computed as described for microt@guteestation in section 2.3. The curve
L%, Vt, is expected to contain a microtubule as well as its fipe estimated regloﬁ)m] where a microtubule
and its tip may lie obtained from low temporal resolution is restricted to a ciiivi@ each frame An illustration
showing curveL! bounded by: . andx’,., is shown in figure 5 (b). An example of a frame from real data
containing several curves; is shown in figure 2 (d).

2.6. Extraction of the Trajectories of Microtubule Tips

The intensities and differential characteristics alohffs) at a tip point change from those of a microtubule to
those of the cytoplasm or extracellular matrix. The sudden change is dbe targe curvature of the isointensity
contours at that point which causes a large increase in the value of 1$th§79. This change is used to compute
a microtubule outer tip feature along(s), wheres is the arc-length parameter. The tip featy{és) is the
directional derivative of/; , along the curve.i(s). That is:

gi(s) = VaLg(s) Ué,t' (6)

ds

This feature is computed for frames-= 1, ..., 7—1. It enhances the intensity of the tip point even though its signal
to noise ratio is low. The feature is very robust not only to backgroundendist also to microtubule curvature
similarly to Uj , that was differentiated to compute it.

The microtubule outer tip point in the first franmte= 0 is the starting point of the trajectory of the outer
tip. The outer tip point&il-m, t = 1,...,7 — 1 in subsequent frames are constrained to lie albhg The
microtubule outer tip can only polymerize or depolymerize for a limited lengif the time interval between
two consecutive frames. Thus, the tip position in a frame lies within a circledidisa centered at the tip point

in the previous framex};, , ,, |x};,; — xim_l‘ < p. The segment of the curvii(s) enclosed by that circle
gives the candidate tip positions at time The point in that curve segment that maximizégs) is selected to
give Xiip,t = arg maXye () gi(s). This subsection together with the previous one, subsection 2.5, conc:&p
steps 3-5 of the algorithm shown in figure 6. These three steps ardedEemuentially for the extraction of the
trajectories of the tips of the microtubulés= 0, ...,n — 1.

2.7. Statistics of the Trajectories of the Microtubule Outer Tips

As a result of tracking the outer ends of the microtubules we can direathpute the microtubule lengths between
the inner reference point! and the tipx};ipt along the microtubule axis. We estimate the lengths of all the
outer segments of the microtubules and in all frames flfpmf tip.t dLC;(S)d Vi, t. This method of measuring
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the length of microtubules along their axes is a more accurate approximtt&nthe currently used manual one
which assumes that the length of the microtubule is the Euclidean distancedoedw inner reference point in the
image and the manually annotated tip [9, 10, 11, 2, 3]. Thus, it ignoresotaioule curvature.

The length measures are used to compute the average of the absolutef vakiehange of the length of the
microtubules. (| £]) = ﬁ > |1: —1i_,]. This represents the average polymerization and depolymerization
rate of the microtubules. The time serigss transformed over the time parameter to compute its Fourier spectrum
G}, wheref is the temporal frequency. This gives the power spectral deﬂrﬁi(y‘) = ||G}||2, Vi, of microtubule
length variation.The sinusoidal approximation to the motion of a microtubule tip representgdtical motion in
steady state. It also represents possible acceleration in polymerizatieolymerizationEach motion fre-
quency is weighted by the corresponding density to compute the averagi@edsfrequencyf:, = Zf f‘I’zg (f),

Vi. The global weighted frequency average over all the microtubulgi,:) = % >, fi., is also computedThis
can give an average representative value for the tip dynamics in a regitve afytoplasm.

Y, t=0,..., T-1
(1) Feature enhancement
r, |

(2) MT assembly segmentation
Ao}

(3) Extract (de)-polymerization regions
i pi’ Df }

(4) Restrict (de)-polymerization regions
L

(5) Compute tip trajectory

i |
X tip.t, v

(6) Compute motion statistics
1), LAY

Fig. 6. This figure shows a block diagram summary of the algorithm. The microtubbkereement and segmen-
tation are performed at steps 1-2. Subsequently, steps 3-5 of the algariéirepeated sequentially to extract the
motion of the microtubule tips = 0,...,n — 1. The last step is the extraction of the average motion statistics of
the assembly.

3. EXPERIMENTS

The experiments were performed on a Xeon CPQ.4% GH z and1.00 GB of RAM. The algorithm was imple-
mented using thé'++ programming language atige user interface for the selection of the microtubule tips in the
first frame was implemented in Tcl/Tk
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3.1. Phantom Data

We tested the sensitivity of the system with two parameterized sets of phantom s®agences of microtubule
dynamics. To model the imaging process the phantom image sequence®wepeet]. They were first smoothed
with a Gaussian filter of standard deviatibrs. Subsequently, Gaussian noise was superimposed. The signal to
noise ratioS N R is the ratio of the phantom microtubule intensity to the standard deviation of thes@awnoise.
All the phantom image sequences consist@f frames of spatial siz&50 x 150. To evaluate the performance of
the algorithm we measure the error in tip position per frame and per tip astiofun€the phantom set parameter.
The error is computed using the ground truth in the phantom data.

The first set of phantom sequences tested the sensitivity of microtubuladiing under superimposed Gaus-
sian noise. A set of phantom image sequences with noise in the f&a¥ge= 5 — 50 was used. Each sequence
contained five microtubules. The microtubules were sinusoidal curvess, The segments of the microtubules
close to their tips deform as the microtubule polymerizes. The tenth and lest<raf the phantom image se-
guence forlSN R = 6.25 are shown in figure 7. In the first row, in figures 7 (a) and (b), aréttages showing the
tip positions computed by the algorithm in different colors. Figures 7 (o)shioe tip trajectories computed by the
algorithm in red together with the ground truth trajectories of the tips in grelees@images show the accuracy of
the tracking for this sequence. The error of the tip positions as a fundtible § N R is shown in figure 7 (d)The
algorithm accurately tracks the microtubule tips up to very ISW R, lower than the typicab N R of a confocal
microscopy sequenc&he average computation time for each phantom sequenc® was 46 sec.

The second set of phantom image sequences examined the sensitivitplgfdiigim with respect to the prox-
imity between neighboring microtubules. Each phantom sequence conta@edid¢rotubules. The microtubules
were straight lines. The noise level wéid’ R = 20 and the microtubule width was ~ 5. The distance between
the axes of consecutive microtubules was in the range-ef4 — 10 pixels. The fiftieth and last frames of the
sequence with proximity = 7 pixels between microtubules are shown in figure 8 (a) and figure 8 @pece
tively. The same images show the tip positions computed by the algorithm in diffestors. In figure 8 (c) are
the trajectories of the microtubule tips in red together with the ground truth imgideese images show that in
this sequence fa¥ = 7 the tracking is accurate. Figure 8 (d) shows a plot of the error in tip posisanfunction
of the proximity between neighboring microtubul@hat plot demonstrates that the tracking algorithm succeeds
for distanced > w between neighboring microtubules. That is, when the distance betweaxethef neighboring
microtubules is greater than the standard deviation of their Gaussian @®stions. This shows the robustness
of the tracking with respect to the proximity of neighboring microtubulés average computation time for each
phantom sequence wasnin 38 sec. This is very low, which shows the limited computational requirements of
the algorithm.

3.2. Real Microscopy Data

The algorithm was evaluated with several video sequences of real €ells. of these sequences are shown in
this work. In figure 10 and figure 11 we show two examples of our in-iivaging experiments of microtubule
dynamics. The sample preparation and data acquisition were performed Igimilareviously described at [57],
expect that epithelial PtK2 cells that stably expresseadbulin-yellow fluorescent protein (YFP) were used. The
cells were grown in Mattek coverslip dishes at 8%, in MEM containing 10% FCS, Pen-Strep, ahd non-
essential acids. The cells were transferred for fluorescent imaging @yanpus 1X-70 microscope that had a
custom plexiglass box and heater to maintain the celiyat’ in 5% CO,. Typically, cells were excited by a
shuttered monochromator (Till Photonics at wavelerigih nm), Chroma YFP dichroic cube, and a00x 1.4
NA oil immersion objective lens. They were detected with an Orca-ER style €&iera (PCO). The samples
were illuminated fo50 — 100 ms and the data was acquired evéryec for several minutes.

The algorithm was verified with two additional imaging sequences. The imagmdjteons of the sequence in
figure 9 are described at [58]. It was an A6 line cell, that is, a Xendjurey epithelial cell. It expressed green
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(a) Computed tips in tenth frame (b) Computed tips in last frame
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(c) Complete trajectories for (d) Error with respect t& NR
the sequence in logarithmic scale

Fig. 7. The images in the first row show the tenth and last frames of the phantarerssgforSN R = 6.25.
The same images show the computed positions of the tips in different col@s$malge in (c) is a spatiotemporal
viewpoint of the computed tip trajectories in red together with the ground trutheieng In (d) is the error of the
tip positions per frame and per tip as a functiorSag¥ R.

fluorescent protein that was fused by means4taly spacer to th€’'-terminus of3-tubulin, 8-tubulin-GFP. The
cells were cultured a3°C' without CO, atmosphere. Fluorescent live imaging at room temperature of the cells
was performed using DeltaVision full spectrum optical sectioning micrassystem of Applied Precision, Inc.
The microscope was equipped with an Olympus IX70 PlanApo, anth@r 1.40 NA oil immersion objective
lens. The cells were detected with a cooled CCD camera of Quantix-LC,mRbautos. Time lapse recording was
performed afl0 sec intervals. The same microscope system was used to convert the segfiémeges into a
QuickTime movie using JPEG compression. The sequence shows the dyoémicsotubule plus ends next to a
wounded edge of the cell.

The imaging conditions of the sequence in figure 12 are described in ddtkd]aThey were live Schneider
Drosophila S2 cells that stably expressed enhanced green fludrpsziemn (EGFP)-tagged-tubulin. It was cul-
tured in Schneiders Drosophila medium supplemented with 10% heat-inadt®v@®&and penicillin/streptomycin.
A member of the kinesin-13 family, KLP59C, had been depleted using datitzieded (ds)RNA interference
(RNAI). Samples were mounted in Prolong (Molecular Probes) and imagedwjtinning disk confocal scanner
(Ultraview/Perkin Elmer, Boston, MA) mounted on a Nikon TE200 inverted nsicope PlanApo with ah00 x
1.4 NA objective lens. Twa-sections of thicknes&5um were obtained with a piezo-electreaxis controller for
4D data collection, y, z, time). Time lapse images were acquired &ic intervals. The images are presented as
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(a) Computed tips in fiftieth frame (b) Computed tips in last frame

Tip position error (pixels)

L
9 10

L
4 5

6 ; 8
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(c) Complete trajectories for (d) Error with respect to
the sequence proximity

Fig. 8. In the first row are the fiftieth and last frames of the phantom sequengedximity § = 7 together with
the computed positions of the tips in different colors. The image in (c) shapsa@otemporal viewpoint of the
computed tip trajectories in red together with the ground truth in green. In {dgisrror of the tip position per
frame and per tip as a function of proximity.

the maximum intensity projections along thaxis. The sequence shows the dynamics of microtubule plus ends
near the periphery of an extended region that contacted neighbotisg ce

The sizes of all the sequences are in table 1. Two frames of each ofuhsegguences are shown in the first
rows of figure 9, figure 10, figure 11, and figure 12, respectivEhese figures show the tip positions in different
colors for the tenth and last frames as computed by the algorithm. The majotitg cbmputed tip trajectories
were also traced manually with a mouse. The manual data was used as guabridr performance evaluation.
The entire trajectories of the tip points in the sequences are shown in redtiotemporal space in figure 9 (c),
figure 10 (c), figure 11 (c), and figure 12 (c), respectively. Ingame figures are also the manually annotated
ground truth trajectories in green. These figures show that the trajexctditiee tips were tracked accurately.

The statistics of the computed tip dynamics are given in table 1. These incliedadatage of the absolute
value of the change of the length of the microtubl,de{$% ) They also include the weighted average of the
frequencyu( f.:) of the motion power spectral density of all the microtubules in a sequéteetips for which
the tracking error compared to ground truth was less than ten pixels wesideced as having been tracked
correctly. Those tips were used to compute the tracking error per frathgeainip. The statistics of the evaluation
of tracking are also in table I'he error in tracking is very low. The large majority of microtubules weaeked
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Sequence figure 9 figure 10 figure 11 figure 12
Sizez-y 350 x 262 636 x 472 640 x 512 137 x 113
Sizet 36 100 100 100

At is seconds 10 5 5 1

Tips tracked 8 19 13 10

Tips tracked correctly 7/8 16/19 11/13 8/10
Evaluation error (pixels 34 2.4 3.7 3.2
(|2 (um.s™1y 0.051 0.21 0.20 0.10
p(fuwt) (s71) 2.00 4.10 291 2.00
Run time 2min 19 sec | 18 min 7 sec | 27 min 9 sec | 2 min 54 sec

Table 1. The statistics describing the real sequences. The table also summarinatpiiteof the algorithm, the
performance of the algorithm, as well as its evaluation for the same seguence

correctly. The algorithm is robust to microtubule proximity, low signal to ecéio, and curvature at the tip point.

The algorithm has mainly failed to track microtubules that overlap. The ouienotabule tips tend to meet
other microtubules and polymerize along their axes. As a result multipletamiles can follow the same track
and become indistinguishable with the imaging technique used. For the sasmrthe manual tracing of micro-
tubules [9, 10, 11, 2, 3] is done for clearly distinguished microtubule tipfias not been investigated whether
ignoring overlapping microtubules introduces a bias in the estimates of thetuicile dynamicsThe algorithm
has also limited ability to resolve the trajectories of tips which intersect under ahgbe. Table 1 gives the
computation time of the algorithm; it is very short and depends on the size oéthe d

4. SUMMARY AND DISCUSSION

The microtubule assembly plays numerous critical roles in a cell. It providestgre and support to the cell. It
also coordinates cell migration and cell division. The most dynamic parteofnilsrotubules are their outer tips.
The assembly is also involved in pathological cell states, for example in ceegeoerative diseases and cancer.
The microtubule assembly must be studied in a quantitative, high throughgpuinfanmative manner. To this
end we have developed a system for the semi-automatic tracking of the motlos microtubule outer tips in a
frame sequenceThe first step of the system is to enhance the signal to noise ratio of theubidm assembly
in the sequence. Subsequently, the microtubules are segmented intthiarfiessto compute the regions expected
to contain the microtubules’ trajectories of possible depolymerization. Tihetmbules are also segmented in
low temporal resolution using the average frame of the sequence to teitiguregions expected to contain the
tips’ trajectories for possible polymerization. Those regions are furthstriced to a curve in every frame and a
microtubule tip feature is computed along those curves. The tip features keel lio form the microtubule outer
tip trajectories. The tracking starts at the first frame and progressesesdally between consecutive frames. The
tips’ trajectories are summarized to give average statistics of the dynarhilee tracked microtubules.

The algorithm we suggest significantly improves quantification compamamnwal tracing which is currently
used to measure microtubule polymerization and depolymerization ratesy®em performs automatic tracking
of multiple tips in the same sequence over extended time periods. It alswves@ccuracy in polymerization and
depolymerization rate estimates by measuring microtubule length using #ieifaaddition, the system improves
objectivity in quantification by performing tip detection using the high curvatbiteeisointensity contours at the
tip point. That point is defined using not only intensity, but also its geomefferehtial properties.
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(a) Tips in tenth frame (b) Tips in last frame

(a) A spatiotemporal viewpoint of the trajectories

Fig. 9. A Xenopus frog epithelial cell imaged with epifluorescent microscopy. [38e images in the first row
show the tenth and last frames together with the computed positions of the tipseirenlifcolors. In (c) is a
spatiotemporal viewpoint of the tip trajectories. In red are the computedtwagsand in green are the manually
tracked ones.

The system depends on four user set parameters. The paramegesreapture the variability among micro-
tubule tracking video sequences. The main parameter of the algorithm mithetubule width,w. The actual
width of the microtubule is= 25 nm. However, its width in an image depends on the spatial resolution and
diffraction of the imaging process. The second parameter of the algorittime maximum allowed extent of poly-
merization or depolymerization of a tip. For the sequences tracked in this twyas set td8w. This parameter
must be larger that the most extensive depolymerization or polymerizatjpected to be tracked. However, it
must not be unnecessarily large to maintain the high signal to noise ratigremjto compute the microtubule tip
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(a) A spatiotemporal viewpoint of the trajectories

Fig. 10. A rat epithelial cell imaged with epifluorescent microscopy. The images ifirgteow show the tenth and
last frames together with the computed positions of the tips in different coto(s) is a spatiotemporal viewpoint
of the tip trajectories. In red are the computed trajectories and in greencamgattually tracked ones.

feature. The third parameter is the maximum allowed cumulative lateral displant of a microtubule during the

entire sequence. In this work it was sette= 2w. The values of the second and third parameters must increase

with the total time duration of the acquisition of the sequence. The last p&eaimsdghe maximum allowed poly-
merization or depolymerization of a microtubule tip along its axis between twseonitive frames,. It depends
on the time interval between the acquisition of two consecutive frames.

The algorithm was evaluated with phantom as well as real sequencefargéenajority of the microtubules
were tracked accurately. The algorithm is unable to resolve the trajectdrigss that overlap the axis of pre-
existing microtubules. The tracking, however, was very robust witheesp image noise, proximity between
neighboring microtubules, and curvature changes of the microtubulestcldkeir outer tips. Moreover, the tip
tracking was successful for high rates of polymerization and depolyatenizand the algorithm was time effi-
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(a) Tips in tenth frame (b) Tips in last frame

(a) A spatiotemporal viewpoint of the trajectories
Fig. 11 Arat epithelial cell imaged with epifluorescent microscopy. The images ifirfieow show the tenth and
last frames together with the computed positions of the tips in different coléms.two images were histogram
equalized to improve visualization. In (c) is a spatiotemporal viewpoint of thé&djpctories. In red are the
computed trajectories and in green are the manually tracked ones.

cient. Also, the time duration of the tracking is adequate to allow microtubule stoideslogical significance as
well as studies for the development of new microtubule based drugsrfoecaeatmentThe algorithm can be im-
proved in several ways. One possibility would be to use different trackoues for polymerization rather than for
depolymerization [45]. This could represent the fact that the depolgaion speed is higher than the polymer-
ization speed. Another possibility would be to perform quantum analysis tweetiee resolution of overlapping
microtubules. The motion tracking can be further improved by incorpagatito the algorithm microtubule prop-
erties established in parallel in microtubule biology. That is, incorporate thealgorithm probabilistic priors
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(a) Tips in tenth (b) Tips in last (a) A spatiotemporal viewpoint
frame frame of the trajectories

Fig. 12 A melanogaster cell depleted of the kinesin-13 family member KLP59C imaged piithisg disk

confocal microscopy [14]. The sequence consists of the maximum intgmejctions of the data. The images in

(a) and (b) show the tenth and last frames together with the computed posititivestips in different colors. In

(c) is a spatiotemporal viewpoint of the tip trajectories. In red are the compratctories and in green are the

manually tracked ones.

about microtubule structure and motion.
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